1. 方差筛选
方差筛选是一种简单而有效的特征筛选方法。
核心逻辑是:特征的方差反映了数据的变化程度,方差很小的特征几乎没有变化,对模型的预测帮助不大。
比如,一个特征的值在所有样本中几乎都一样(方差接近0),那么它对区分不同类别或预测结果几乎没有贡献。
因此,方差筛选会设定一个方差阈值,剔除方差低于这个阈值的特征,保留那些变化较大的特征,从而减少特征数量,提高模型效率。
特别适合处理高维数据,能快速去掉不重要的特征,但它不考虑特征与目标变量之间的关系,可能会误删一些低方差但有意义的特征。
# 打印标题,表明这是方差筛选的部分
print("--- 方差筛选 (Variance Threshold) ---")
# 导入需要的工具库
from sklearn.feature_selection import VarianceThreshold # 方差筛选工具,用于剔除方差小的特征
import time # 用于记录代码运行时间,方便比较效率
# 记录开始时间,后面会计算整个过程耗时
start_time = time.time()
# 创建方差筛选器,设置方差阈值为0.01
# 阈值是指方差的最小值,低于这个值的特征会被删除(可以根据数据情况调整阈值)
selector = VarianceThreshold(threshold=0.01)
# 对训练数据进行方差筛选,fit_transform会计算每个特征的方差并剔除不满足阈值的特征
# X_train是原始训练数据,X_train_var是筛选后的训练数据
X_train_var = selector.fit_transform(X_train)
# 对测试数据应用同样的筛选规则,transform会直接用训练数据的筛选结果处理测试数据
# X_test是原始测试数据,X_test_var是筛选后的测试数据
X_test_var = selector.transform(X_test)
# 获取被保留下来的特征名称
# selector.get_support()返回一个布尔值列表,表示哪些特征被保留,这个是selector这个实例化的类的一个方法
# X_train.columns是特征的名称,结合布尔值列表可以提取保留特征的名字
selected_features_var = X_train.columns[selector.get_support()].tolist()
# 打印筛选后保留的特征数量和具体特征名称,方便查看结果
print(f"方差筛选后保留的特征数量: {len(selected_features_var)}")
print(f"保留的特征: {selected_features_var}")
# 创建一个随机森林分类模型,用于在筛选后的数据上进行训练和预测
# random_state=42是为了保证每次运行结果一致,方便教学和对比
rf_model_var = RandomForestClassifier(random_state=42)
# 在筛选后的训练数据上训练模型
# X_train_var是筛选后的特征数据,y_train是对应的目标标签
rf_model_var.fit(X_train_var, y_train)
# 使用训练好的模型对筛选后的测试数据进行预测
# X_test_var是筛选后的测试特征数据,rf_pred_var是预测结果
rf_pred_var = rf_model_var.predict(X_test_var)
# 记录结束时间,计算整个训练和预测过程的耗时
end_time = time.time()
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
# 打印模型在测试集上的分类报告,展示模型的性能
# 分类报告包括精确率、召回率、F1分数等指标,帮助评估模型好坏
print("\n方差筛选后随机森林在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_var))
# 打印混淆矩阵,展示模型预测的详细结果
# 混淆矩阵显示了真实标签和预测标签的对应情况,比如多少样本被正确分类,多少被错分
print("方差筛选后随机森林在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_var))
2. 皮尔逊相关系数筛选
基于特征与目标变量之间相关性的特征选择方法。
核心逻辑是:计算每个特征与目标变量之间的相关系数(范围在-1到1之间,值越大表示正相关越强,值越小表示负相关越强,接近0表示几乎无关),然后根据相关系数的绝对值大小,选择与目标变量相关性较高的特征,剔除相关性较低的特征。
保留那些对预测目标最有帮助的特征,减少无关或冗余特征的干扰。
基于变量相关性的经典特征选择技术,常用于处理目标变量为连续型的场景。
适用于目标变量是连续型的情况,若面对分类问题,通常需要先对目标变量进行编码处理,将其转化为数值型数据后再开展分析。
print("--- 皮尔逊相关系数筛选 ---")
from sklearn.feature_selection import SelectKBest, f_classif
import time
start_time = time.time()
# 计算特征与目标变量的相关性,选择前k个特征(这里设为10个,可调整)
# 注意:皮尔逊相关系数通常用于回归问题(连续型目标变量),但如果目标是分类问题,可以用f_classif
k = 10
selector = SelectKBest(score_func=f_classif, k=k)
X_train_corr = selector.fit_transform(X_train, y_train)
X_test_corr = selector.transform(X_test)
# 获取筛选后的特征名
selected_features_corr = X_train.columns[selector.get_support()].tolist()
print(f"皮尔逊相关系数筛选后保留的特征数量: {len(selected_features_corr)}")
print(f"保留的特征: {selected_features_corr}")
# 训练随机森林模型
rf_model_corr = RandomForestClassifier(random_state=42)
rf_model_corr.fit(X_train_corr, y_train)
rf_pred_corr = rf_model_corr.predict(X_test_corr)
end_time = time.time()
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n皮尔逊相关系数筛选后随机森林在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_corr))
print("皮尔逊相关系数筛选后随机森林在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_corr))
3. lasso筛选
结合特征选择和模型训练的方法。
核心逻辑是:在进行线性回归的同时,通过引入L1正则化项(即惩罚项),强制将一些不重要特征的回归系数压缩到0,从而实现特征筛选。
Lasso会自动“挑选”对预测目标有贡献的特征(系数不为0),而剔除无关或冗余的特征(系数为0)。
特别适合处理高维数据,可以减少特征数量,提高模型的解释性和计算效率。
(lasso本质上是回归模型,实际上用这个方法来筛选也是用回归模型对分类问题建模结束了,然后打印特征重要度,她是把0和1目标变量视为连续值来进行回归的。效果会差一点,不符合逻辑,但是确实可以计算)
print("--- Lasso筛选 (L1正则化) ---")
from sklearn.linear_model import Lasso
from sklearn.feature_selection import SelectFromModel
import time
start_time = time.time()
# 使用Lasso回归进行特征筛选
lasso = Lasso(alpha=0.01, random_state=42) # alpha值可调整
selector = SelectFromModel(lasso)
selector.fit(X_train, y_train)
X_train_lasso = selector.transform(X_train)
X_test_lasso = selector.transform(X_test)
# 获取筛选后的特征名
selected_features_lasso = X_train.columns[selector.get_support()].tolist()
print(f"Lasso筛选后保留的特征数量: {len(selected_features_lasso)}")
print(f"保留的特征: {selected_features_lasso}")
# 训练随机森林模型
rf_model_lasso = RandomForestClassifier(random_state=42)
rf_model_lasso.fit(X_train_lasso, y_train)
rf_pred_lasso = rf_model_lasso.predict(X_test_lasso)
end_time = time.time()
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\nLasso筛选后随机森林在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_lasso))
print("Lasso筛选后随机森林在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_lasso))
4. 树模型重要性
print("--- 树模型自带的重要性筛选 ---")
from sklearn.feature_selection import SelectFromModel
import time
start_time = time.time()
# 使用随机森林的特征重要性进行筛选
rf_selector = RandomForestClassifier(random_state=42)
rf_selector.fit(X_train, y_train)
selector = SelectFromModel(rf_selector, threshold="mean") # 阈值设为平均重要性,可调整
X_train_rf = selector.transform(X_train)
X_test_rf = selector.transform(X_test)
# 获取筛选后的特征名
selected_features_rf = X_train.columns[selector.get_support()].tolist()
print(f"树模型重要性筛选后保留的特征数量: {len(selected_features_rf)}")
print(f"保留的特征: {selected_features_rf}")
# 训练随机森林模型
rf_model_rf = RandomForestClassifier(random_state=42)
rf_model_rf.fit(X_train_rf, y_train)
rf_pred_rf = rf_model_rf.predict(X_test_rf)
end_time = time.time()
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n树模型重要性筛选后随机森林在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_rf))
print("树模型重要性筛选后随机森林在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_rf))
5. shap重要性
print("--- SHAP重要性筛选 ---")
import shap
from sklearn.feature_selection import SelectKBest
import time
start_time = time.time()
# 使用随机森林模型计算SHAP值
rf_shap = RandomForestClassifier(random_state=42)
rf_shap.fit(X_train, y_train)
explainer = shap.TreeExplainer(rf_shap)
shap_values = explainer.shap_values(X_train)
# 计算每个特征的平均SHAP值(取绝对值的平均)
mean_shap = np.abs(shap_values[1]).mean(axis=0) # shap_values[1]对应正类
k = 10 # 选择前10个特征,可调整
top_k_indices = np.argsort(mean_shap)[-k:]
X_train_shap = X_train.iloc[:, top_k_indices]
X_test_shap = X_test.iloc[:, top_k_indices]
# 获取筛选后的特征名
selected_features_shap = X_train.columns[top_k_indices].tolist()
print(f"SHAP重要性筛选后保留的特征数量: {len(selected_features_shap)}")
print(f"保留的特征: {selected_features_shap}")
# 训练随机森林模型
rf_model_shap = RandomForestClassifier(random_state=42)
rf_model_shap.fit(X_train_shap, y_train)
rf_pred_shap = rf_model_shap.predict(X_test_shap)
end_time = time.time()
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\nSHAP重要性筛选后随机森林在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_shap))
print("SHAP重要性筛选后随机森林在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_shap))
6. 递归特征消除REF
特征选择方法,广泛用于机器学习中,特别是在分类和回归问题中,用于从一组特征中筛选出对模型性能贡献最大的子集。
RFE的核心思想是通过递归地移除最不重要的特征,逐步缩小特征集,直到达到预设的特征数量或满足其他停止条件。
print("--- 递归特征消除 (RFE) ---")
from sklearn.feature_selection import RFE
import time
start_time = time.time()
# 使用随机森林作为基础模型进行RFE
base_model = RandomForestClassifier(random_state=42)
rfe = RFE(base_model, n_features_to_select=10) # 选择10个特征,可调整
rfe.fit(X_train, y_train)
X_train_rfe = rfe.transform(X_train)
X_test_rfe = rfe.transform(X_test)
# 获取筛选后的特征名
selected_features_rfe = X_train.columns[rfe.support_].tolist()
print(f"RFE筛选后保留的特征数量: {len(selected_features_rfe)}")
print(f"保留的特征: {selected_features_rfe}")
# 训练随机森林模型
rf_model_rfe = RandomForestClassifier(random_state=42)
rf_model_rfe.fit(X_train_rfe, y_train)
rf_pred_rfe = rf_model_rfe.predict(X_test_rfe)
end_time = time.time()
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\nRFE筛选后随机森林在测试集上的分类报告:")
print(classification_report(y_test, rf_pred_rfe))
print("RFE筛选后随机森林在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred_rfe))
上面这些方法的计算耗时没意义,目的是筛选出最后用的特征