Linux:Input/Output Error:记一次服务器接外部硬盘拷贝故障排除

这次的任务是从服务器拷贝数据到一块外部硬盘上。

这块外部硬盘是一块家用移动硬盘,磁盘格式是NTFS,很明显是经常搭配Windows系统的家用电脑使用的。我们的Linux系统的服务器无法直接识读NTFS格式的磁盘,因此要安装对应的ntfs-3g工具来识读这块硬盘:

yum install ntfs-3g

然后通过以下命令挂载:

mount.ntfs-3g /dev/sdb /data

其中/dev/sdb是通过df命令看到的外界磁盘的设备标识符,/data是欲挂载的目录,该目录须提前存在且为空。

在实际使用中,外接存储设备如果经常需要跨不同操作系统读写数据,建议设置为exFAT格式,支持主流的操作系统(Windows,MacOS,Linux)直接识读。

在挂载好硬盘之后,就开始拷贝数据。我们使用nohup把cp命令挂载后台。期间遇到nohup异常退出,以下是问题排查过程:

  1. 这种nohup无法正常挂在后台的问题,通常是在执行的时候遇到错误。看nohup的log(即原始命令的报错信息),发现报错Input/Output Error. 这个错误的原因一般是盘掉了,需要确定是否需要重新mount,甚至去机房重新检查物理链接(重新插一遍)。
  2. 于是通过df首先检查硬盘的识读情况,发现正常识读,盘依然
<think>嗯,用户让我分析这段C++代码中的try块能捕捉哪些错误,以及什么类型的错误捕捉不到。首先,我需要仔细看看代码的结构。代码里使用了try-catch块,捕获的是std::exception类型的异常。那里面调用了哪些可能抛出异常的函数呢? 首先,static_cast转换。这里是将model_ptr转换为torch::jit::script::Module指针。如果model_ptr本身不是一个有效的指针,或者指向的类型不对,这时候static_cast会不会抛出异常?我得在C++中,static_cast在运行时通常不会进行检查,错误的转换可能导致未定义行为,但不会直抛出异常。所以这里可能不会触发catch块,而是导致程序崩溃或者其他问题。 下来是torch::from_blob,这个函数用来从输入数据创建张量。如果input_data是空指针或者无效,或者形状参数有问题,比如负数或者太大的尺寸,这里可能会抛出异常。PyTorch中的函数通常会抛出异常,比如std::runtime_error,而std::runtime_error是std::exception的子类,所以会被捕获到。 然后是model->forward的调用。执行模型推理时,如果模型本身有问题,比如输入形状不匹配,或者模型未正确加载,这里应该会抛出异常。同样,PyTorch的异常应该继承自std::exception,所以会被捕获。 下来是memcpy函数。这个C标准库函数通常不会抛出异常,而是可能导致内存访问错误,比如如果output_data无效或者大小不够,可能会引发段错误,这时候程序会直崩溃,不会被catch块捕获。另外,如果output_tensor的数据大小不足1000个float,memcpy会越界拷贝,导致未定义行为,但同样不会抛出C++异常。 那catch块只能捕获std::exception及其子类的异常。其他类型的异常,比如非std::exception派生的异常,比如整数除以零(虽然C++标准中除以零是未定义行为,但某些编译器可能生成特定的信号或异常),或者访问违存(如空指针解引用)会触发信号,比如SIGSEGV,这些信号不会被try-catch捕获,导致程序终止。 此外,像torch::Tensor可能在构造时抛出异常,比如内存分配失败,这时候应该也是std::bad_alloc,属于std::exception的子类,会被捕获。但是,如果某些错误没有被正确封装成异常,比如底层CUDA错误,PyTorch是否有可能会抛出非std::exception类型的异常?需要查证PyTorch的异常体系。一般来说,PyTorch C++前端会抛出torch::Error,而torch::Error是继承自std::exception的,所以应该能被捕获。 总结一下,try块可以捕获到所有显式抛出std::exception派生类的异常,如PyTorch相关的错误、内存分配失败等。无法捕获的是非异常错误,如内存访问违规、信号、静态转换错误导致的未定义行为,以及未处理的其他异常类型,比如Windows的结构化异常等。 用户可能需要了解在哪些情况下需要额外的错误处理,比如检查指针有效性,处理信号,或者使用更广泛的异常捕获(如catch (...)),但后者通常不被推荐,因为难以正确处理。此外,用户可能需要确保model_ptr的有效性,输入数据的正确性,以及输出缓冲区的足够空间,以避免未捕获的错误。</think>以下是对该代码中`try`块异常捕捉机制的详细分析: $$ \text{代码结构} $$ ```cpp try { // 模型转换、张量创建、推理执行、数据拷贝 } catch (const std::exception& e) { // 异常处理 } ``` ### 一、可捕捉的异常类型 1. **模型转换相关** - 当`static_cast`转换非法指针时: ```cpp auto* model = static_cast<torch::jit::script::Module*>(model_ptr); ``` - ❗ 实际不会直抛出异常(C++静态转换无运行时检查) - ✅ 但若后续操作因错误指针崩溃,错误可能通过其他途径暴露 2. **张量创建阶段** ```cpp torch::Tensor input_tensor = torch::from_blob(...); ``` - `torch::from_blob`可能抛出: - `std::runtime_error`(输入数据无效/形状非法) - `std::bad_alloc`(内存分配失败) 3. **模型推理阶段** ```cpp model->forward(inputs).toTensor(); ``` - 可能抛出PyTorch内部异常: - 输入维度不匹配(`c10::Error`) - CUDA错误(`c10::CUDAError`) - 模型未初始化(`torch::jit::Error`) - 💡 所有PyTorch异常均继承自`std::exception` ### 二、无法捕捉的异常类型 1. **内存非法访问** ```cpp memcpy(output_data, ...); // 输出缓冲区溢出/无效指针 ``` - 导致段错误(SIGSEGV) - ❌ C++异常机制无法捕获信号 2. **未继承std::exception的异常** ```cpp throw 42; // 抛出整型异常 ``` - 需使用`catch(...)`才能捕捉 3. **异步错误** - CUDA异步操作错误(需显式同步检查) - 多线程未捕获的异常 ### 三、防御性编程建议 1. **前置校验** ```cpp if(model_ptr == nullptr) throw std::invalid_argument(...); if(input_data == nullptr) throw std::runtime_error(...); ``` 2. **扩展异常捕捉** ```cpp catch (const c10::Error& e) { // 专门处理PyTorch错误 } catch (...) { // 处理未知异常 } ``` 3. **内存安全措施** ```cpp // 使用vector自动管理内存 std::vector<float> output_buffer(1000); memcpy(output_buffer.data(), ...); ``` ### 四、典型错误示例对照表 | 错误类型 | 是否可捕获 | 解决方案 | |-----------------------|------------|-------------------------| | 模型指针无效 | ❌ | 增加前置指针校验 | | 输入张量形状不匹配 | ✅ | 检查输入维度 | | CUDA内存不足 | ✅ | 添加显存监控逻辑 | | 输出缓冲区溢出 | ❌ | 使用智能指针/容器 | | 除零错误 | ❌ | 添加数值校验 | 通过合理使用前置校验与异常处理扩展,可显著提升代码健壮性。建议结合`try-catch`与防御性编程策略,实现多层级错误防护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值