第6章算法题

1)分别以邻接矩阵和邻接表作为存储结构,实现以下图的基本操作:

① 增加一个新顶点v,InsertVex(G, v);

② 删除顶点v及其相关的边,DeleteVex(G, v);

③ 增加一条边<v,w>,InsertArc(G, v, w);

④ 删除一条边<v,w>,DeleteArc(G, v, w)。

[算法描述]

假设图G为有向无权图,以邻接矩阵作为存储结构四个算法分别如下:

① 增加一个新顶点v

Status Insert_Vex(MGraph &G, char v)//在邻接矩阵表示的图G上插入顶点v

{

if(G.vexnum+1)>MAX_VERTEX_NUM return INFEASIBLE;

G.vexs[++G.vexnum]=v;

return OK;

}//Insert_Vex

② 删除顶点v及其相关的边,

Status Delete_Vex(MGraph &G,char v)//在邻接矩阵表示的图G上删除顶点v

{

n=G.vexnum;

if((m=LocateVex(G,v))<0) return ERROR;

G.vexs[m]<->G.vexs[n]; //将待删除顶点交换到最后一个顶点

for(i=0;i<n;i++)

{

G.arcs[m]=G.arcs[n];

G.arcs[m]=G.arcs[n]; //将边的关系随之交换

}

G.arcs[m][m].adj=0;

G.vexnum--;

return OK;

}//Delete_Vex

分析:如果不把待删除顶点交换到最后一个顶点的话,算法将会比较复杂,而伴随着大量元素的移动,时间复杂度也会大大增加。

③ 增加一条边<v,w>

Status Insert_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上插入边(v,w)

{

if((i=LocateVex(G,v))<0) return ERROR;

if((j=LocateVex(G,w))<0) return ERROR;

if(i==j) return ERROR;

if(!G.arcs[j].adj)

{

G.arcs[j].adj=1;

G.arcnum++;

}

return OK;

}//Insert_Arc

④ 删除一条边<v,w>

Status Delete_Arc(MGraph &G,char v,char w)//在邻接矩阵表示的图G上删除边(v,w)

{

if((i=LocateVex(G,v))<0) return ERROR;

if((j=LocateVex(G,w))<0) return ERROR;

if(G.arcs[j].adj)

{

G.arcs[j].adj=0;

G.arcnum--;

}

return OK;

}//Delete_Arc



以邻接表作为存储结构,本题只给出Insert_Arc算法.其余算法类似。

Status Insert_Arc(ALGraph &G,char v,char w)//在邻接表表示的图G上插入边(v,w)

{

if((i=LocateVex(G,v))<0) return ERROR;

if((j=LocateVex(G,w))<0) return ERROR;

p=new ArcNode;

p->adjvex=j;p->nextarc=NULL;

if(!G.vertices.firstarc) G.vertices.firstarc=p;

else

{

for(q=G.vertices.firstarc;q->q->nextarc;q=q->nextarc)

if(q->adjvex==j) return ERROR; //边已经存在

q->nextarc=p;

}

G.arcnum++;

return OK;

}//Insert_Arc

2一个连通图采用邻接表作为存储结构,设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。

[算法描述]

Void DFSn(Graph G,int v)

{  //从第v个顶点出发非递归实现深度优先遍历图G

Stack s;

SetEmpty(s);

Push(s,v);

While(!StackEmpty(s))

{      //栈空时第v个顶点所在的连通分量已遍历完

Pop(s,k);

If(!visited[k])

{       visited[k]=TRUE;

VisitFunc(k);          //访问第k个顶点

//将第k个顶点的所有邻接点进栈

for(w=FirstAdjVex(G,k);w;w=NextAdjVex(G,k,w))

{      

if(!visited[w]&&w!=GetTop(s)) Push(s,w);    //图中有环时w==GetTop(s)

}

             }

     }

3设计一个算法,求图G中距离顶点v的最短路径长度最大的一个顶点,设v可达其余各个顶点。

[题目分析]

利用Dijkstra算法求v0到其它所有顶点的最短路径,分别保存在数组D[i]中,然后求出D[i]中值最大的数组下标m即可。

[算法描述]

int ShortestPath_MAX(AMGraph G, int v0){

    //用Dijkstra算法求距离顶点v0的最短路径长度最大的一个顶点m

    n=G.vexnum;                                  //n为G中顶点的个数

    for(v = 0; v<n; ++v){                    //n个顶点依次初始化

       S[v] = false;                                 //S初始为空集

       D[v] = G.arcs[v0][v];                //将v0到各个终点的最短路径长度初始化

       if(D[v]< MaxInt)  Path [v]=v0;         //如果v0和v之间有弧,则将v的前驱置为v0

       else Path [v]=-1;                     //如果v0和v之间无弧,则将v的前驱置为-1

      }//for

      S[v0]=true;                                  //将v0加入S

      D[v0]=0;                                   //源点到源点的距离为0

      /*开始主循环,每次求得v0到某个顶点v的最短路径,将v加到S集*/

      for(i=1;i<n; ++i){                    //对其余n−1个顶点,依次进行计算

        min= MaxInt;

        for(w=0;w<n; ++w)

          if(!S[w]&&D[w]<min)  

              {v=w; min=D[w];}                //选择一条当前的最短路径,终点为v

        S[v]=true;                                 //将v加入S

        for(w=0;w<n; ++w)                      //更新从v0到V−S上所有顶点的最短路径长度

        if(!S[w]&&(D[v]+G.arcs[v][w]<D[w])){

             D[w]=D[v]+G.arcs[v][w];     //更新D[w]

             Path [w]=v;                         //更改w的前驱为v

        }//if

    }//for

/*最短路径求解完毕,设距离顶点v0的最短路径长度最大的一个顶点为m */       

Max=D[0];

m=0;

for(i=1;i<n;i++)

if(Max<D[i]) m=i;           

return m;

}

4试基于图的深度优先搜索策略写一算法,判别以邻接表方式存储的有向图中是否存在由顶点vi到顶点vj的路径(i≠j)。

[题目分析]

引入一变量level来控制递归进行的层数

[算法描述]

int visited[MAXSIZE]; //指示顶点是否在当前路径上

int level=1;//递归进行的层数

int exist_path_DFS(ALGraph G,int i,int j)//深度优先判断有向图G中顶点i到顶点j

是否有路径,是则返回1,否则返回0

{

  if(i==j) return 1; //i就是j

  else

  {

    visited[i]=1;

    for(p=G.vertices[i].firstarc;p;p=p->nextarc,level--)

    { level++;

      k=p->adjvex;

      if(!visited[k]&&exist_path(k,j)) return 1;//i下游的顶点到j有路径

}//for

  }//else

if (level==1)  return 0;

}//exist_path_DFS

5采用邻接表存储结构,编写一个算法,判别无向图中任意给定的两个顶点之间是否存在一条长度为为k的简单路径。

[算法描述]

int visited[MAXSIZE];

int exist_path_len(ALGraph G,int i,int j,int k)

//判断邻接表方式存储的有向图G的顶点i到j是否存在长度为k的简单路径

{if(i==j&&k==0) return 1; //找到了一条路径,且长度符合要求

 else if(k>0)

  {visited[i]=1;

   for(p=G.vertices[i].firstarc;p;p=p->nextarc)

    {l=p->adjvex;

     if(!visited[l])

        if(exist_path_len(G,l,j,k-1)) return 1; //剩余路径长度减一

    }//for

   visited[i]=0; //本题允许曾经被访问过的结点出现在另一条路径中

  }//else

 return 0; //没找到

}//exist_path_len













评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值