- 博客(7)
- 收藏
- 关注
原创 《统计学习方法》(1)——感知机
《统计学习方法》(1)——感知机1958年,Rosenblatt等人成功研制了代号为Mark I的感知机(perceptron),这是历史上首个神经网络的学习功能用于模式识别的装置,标志着神经网络进入了新的历史阶段。\quad1、感知机感知机是二分类的线性分类模型,输入为实例的特征向量,输出是实例的类别,可以是-1和1。试想一下我们有一数据集T={(x1,y1),(x2,y2),…,(xn,yn)}T = \{(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)\}T={(x1
2021-08-22 09:58:00
303
原创 图神经网络task2——消息传递
这是目录1、消息传递范式2、MessagePassing基类2.1、MP类和基本方法3、MessagePassing实例3.1、三个函数的数学定义3.2、`GCNConv`实现步骤(1)向邻接矩阵添加自环边(2)对节点的特征矩阵进行线性变换(3)对变换后的节点特征进行标准化(4)归一化j中的节点特征(5)将节点特征求和参考文献1、消息传递范式消息传递是实现GNN的一种通用框架和编程范式。它从聚合与更新的角度归纳总结了多种GNN模型的实现,它的思路是:首先结合边的特征以及和边相连的两个节点的特征,得到
2021-06-19 22:37:21
1512
原创 图神经网络task1——PyG中的图与图数据的使用
1、Data类Data类是位于torch_geometric.data这个包中的一个类,可以有效地帮助我们创建图结构。\quad1.1、Data类的定义构建一个图,我们需要知道点的信息和边的信息,我们看一下Data类是如何构造图的:class Data(object): def __init__(self, x=None, edge_index=None, edge_attr=None, y=None,pos=None, normal=None, face=None, **kwargs):
2021-06-16 23:19:58
1742
6
转载 四、关联规则挖掘之FP-Growth
同步更新公众号:海涛技术漫谈频繁项挖掘广泛的应用于寻找关联的事物。最经典的就是,电商企业通过分析用户的订单,挖掘出经常被共同购买的商品,用于推荐。本文首先介绍频繁项挖掘技术的演进,从暴力求解到Aprioir算法。然后,通过一个案例详细的讲解FP-Growth的原理。接下来介绍并行FP-Growt...
2020-05-27 13:41:34
1014
原创 1、python数据处理之openpyxl
openpyxl可用来读取并写excel文件。一、文件操作1.1、打开文件打开已有文件和创建文件openpyxlimport openpyxl1.2、二、sheet(数据表)操作三、单元格操作...
2020-05-09 19:02:44
368
原创 二、认识数据之基本描述性统计
1、数据对象与属性类型标称属性(nominal)二元属性(binary):一种特殊的标称属性或布尔属性序数属性(ordinal):有意义的序,但之差是未知的数值属性(numeric)区间标度(interval-scaled):相等的单位尺度,没有真正的零点。如温度;比率标度(ratio-scaled):具有固定零点的数值属性,如身高。从另一个角度又可以将属性分为:离散属性和...
2020-04-20 22:53:06
1059
原创 python数据处理拾遗
1、背景2019年11月底因需要,使用Python对大众装配线边的数据做了一些处理,由于第一次做处理,有些很不熟悉,故于此记下记录与心得。才学疏浅,望各位指教。2、常用函数2.1、local()在批次读取csv文件时,为批量生成变量名。采用local()函数生成。names = locals()n = ['过点信息明细2019.9.23-2019.10.18','车型零件总表11-25...
2019-12-05 09:23:04
305
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人