用Python,计算加权熵Hw(X)

本文介绍了如何使用Python和NumPy库计算加权熵。通过给出的代码示例,展示了如何处理概率分布和权重,得到加权熵Hw(X)的计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入随机变量X的概率分布和权重,输出H_{w}\left ( X \right ) = -\sum_{i=1}^{q} w_{i}p_{i}logP_{i},其中 P_{i} 是事件 a_{i} 的概率,w_{i} 是事件 a_{i} 的权重。

 

import numpy as np
 
p = eval(input("请输入事件的p(X):[p1,p2,...]"))
w = eval(input("请输入事件的p(X)的权重w:[w1,w2,...]"))
SUM = 0
 
if sum(p) != 1 or len(p)!= len(w): #要求概率分布的和=1,且p和权重的数量相等
    print("概率分布错误")
for i in range(0,len(p)):
    if p[i] > 1 or p[i] <= 0: #概率在(0,1]
        print("概率分布错误")
    elif w[i] < 0:
        p
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值