关于Segment Anything(SAM)模型和其医学应用

目录

0 关于SAM

1 SAM简介

1.1 模型结构​编辑

1.1.1 视觉编码器

1.1.2 提示编码器

1.1.3 mask解码器

1.2 数据集

1.2.1 数据集构建

1.2.2 数据集特点

1.3 模型训练

1.3.1 Loss函数

1.3.2 模型的训练规模

2 SAM模型医学应用

2.1 CT图像

2.2 MRI图像

2.3 结肠镜检查图像

2.4 H&E染色组织切片图像

2.5 基于SAM的医学图像分割


0 关于SAM

SAM 论文:arxiv.org/pdf/2304.02643      

SAM demo:Segment Anything | Meta AI (segment-anything.com)

SAM 综述:A Comprehensive Survey on Segment Anything Model for Vision and Beyond

领域SAM:

医学:MedSAM、MedSAM2

视频:SAM2

遥感:GeoSAM


1 SAM简介

论文摘要:我们介绍了“Segment Anything”(SA)项目:这是一个关于图像分割的新任务、模型和数据集。通过在数据收集循环中使用我们高效的模型,我们构建了迄今为止最大的分割数据集,包含超过10亿个mask,基于1100万张经过许可且尊重隐私的图像。该模型设计并训练为可响应提示,因此能够在新的图像分布和任务上进行零样本迁移。我们在多个任务上评估了其能力,发现它的零样本表现令人印象深刻,通常可以与之前完全监督的结果相媲美,甚至超过它们。

简单来说,SAM构建了一个巨大的mask数据集(具体构建方法后续会介绍),设计了一种巧妙的结构训练模型可以在稀疏提示:点、框、文本,密集提示:mask上达到和监督模型媲美的效果,另外,可以有效地迁移到数据分布不同的推理集上

1.1 模型结构

模型包括一个视觉编码器(MAE预训练的ViT-H)、一个提示编码器(综合四种不同的提示)、一个mask解码器。

1.1.1 视觉编码器

图像编码器可以是输出图像嵌入的任意网络。为实现可扩展性和利用强大的预训练,采用了MAE预训练的Vision Transformer (ViT),并进行了最小的调整以处理高分辨率输入。具体使用ViT-H/16模型,结合14×14窗口注意力机制和四个全局注意力块。图像编码器的输出是输入图像的16倍下采样嵌入,并以1024×1024的输入分辨率生成64×64的嵌入。随后,通过1×1和3×3的卷积减少通道数至256,并进行层归一化。

1.1.2 提示编码器

提示编码器分为两个大类,稀疏提示(点、框、文本)和密集提示(mask):

1)稀疏提示:

点:在图像上用户提供的一些前景或背景点,模型会使用位置编码(Positional Encoding)来表示这些点的位置信息。同时,模型会为每种提示类型(如前景点和背景点)学习不同的嵌入

<think>嗯,用户想了解SAM模型的工作原理使用方法。首先,我需要回忆一下SAM的相关信息。记得SAM是Meta提出的一个用于图像分割的模型,可以处理各种提示输入生成掩码。根据引用[3],SAM包含三个组件:图像编码器、提示编码器掩码解码器。这部分应该是结构的关键。 接下来,工作原理方面,用户可能需要知道每个组件的功能。图像编码器可能用的是类似ViT的结构,处理高分辨率图像。提示编码器需要处理不同类型的提示,比如点、框、文本,但引用里提到的是点、框掩码,所以可能需要确认。然后,掩码解码器结合图像提示信息生成分割结果。引用[4]提到预训练时模拟各种提示,对比预测结果,这应该是训练策略的一部分。 关于使用方法,用户可能想知道如何实际操作,比如输入点、框等提示,或者批量处理。引用[2]提到代码复现部分,有点标记、框标记的预测,可能需要说明如何调用模型,不同的输入方式对应的输出。例如,单点、多点、混合提示的使用。 还要考虑用户可能的深层需求,比如他们是否想自己训练模型,或者应用在具体项目中。可能需要强调SAM的零样本迁移能力,适用场景如医学图像、自动驾驶等,引用[1][4]提到的数据生成歧义处理能力。 需要注意回答的结构,分工作原理使用方法,每个部分再细分组件步骤。引用格式要正确,每个引用对应到正确的部分。例如,模型结构部分引用[3],训练策略引用[4],使用示例引用[2]。 最后,生成相关问题时要围绕SAM的扩展应用、优化、对比其他模型等方面,帮助用户进一步探索。检查是否遗漏了重要部分,比如数据引擎的三个阶段,但用户的问题可能更关注模型本身,所以可能不需要深入数据部分,除非必要。</think>### Segment Anything Model (SAM) 模型解析 #### 一、工作原理 1. **核心组件** SAM 包含三个核心模块(引用[3]): - **图像编码器(Image Encoder)**:使用 Vision Transformer (ViT) 结构,将输入图像编码为高维特征表示$$Z \in \mathbb{R}^{H \times W \times C}$$,支持高分辨率输入(如 $1024 \times 1024$)。 - **提示编码器(Prompt Encoder)**:将用户提供的提示(点、框、文本或掩码)编码为向量,例如点坐标通过位置编码映射为嵌入向量$$p \in \mathbb{R}^d$$。 - **掩码解码器(Mask Decoder)**:结合图像特征提示嵌入,通过交叉注意力机制生成分割掩码$$M \in \{0,1\}^{H \times W}$$,并预测掩码的置信度得分。 2. **训练策略** - 预训练时,通过模拟多种提示(单点、多点、框等)生成训练样本,并计算预测掩码与真实标签的损失(如 Dice Loss + Focal Loss)[^4]。 - 支持**零样本迁移**:无需微调即可直接应用于新数据集或任务,例如医学图像分割、遥感图像分析等[^1]。 --- #### 二、使用方法 1. **输入类型** SAM 支持以下交互式提示(引用[2]): - **点标记**:单点(前景/背景)或多点组合。 - **框标记**:通过矩形框指定目标范围。 - **混合提示**:同时输入点框以提高精度。 2. **代码示例(简化版)** ```python from segment_anything import SamPredictor, sam_model_registry # 加载模型 sam = sam_model_registry["vit_b"](checkpoint="sam_vit_b_01ec64.pth") predictor = SamPredictor(sam) # 输入图像 predictor.set_image("image.jpg") # 指定提示(例如点坐标标签) input_point = np.array([[x1, y1], [x2, y2]]) # 坐标 input_label = np.array([1, 0]) # 1为前景,0为背景 # 生成掩码 masks, scores, _ = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True # 输出多个候选掩码 ) ``` 3. **应用场景** - **自动标注**:通过批量生成掩码加速数据标注流程。 - **交互式编辑**:结合用户反馈迭代优化分割结果。 - **跨领域分割**:如自动驾驶中的障碍物识别、生物医学图像分析等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值