干货 | 利用pandas处理Excel数据

本文详细介绍了如何使用Python的pandas库处理Excel数据,包括读取、显示、清洗、预处理和数据提取等步骤。通过实例展示了数据的行与列数、唯一值、缺失值处理、排序、分组及条件提取等操作。适合Python初学者和进阶者提升数据处理能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新建一个excel表格(table1.csv)用于案例讲解:

图片

导库

import pandas as pd
import numpy as np

读取数据

df = pd.read_excel('table1.xlsx') # 相对路径
# df = pd.read_excel(r'E:\Anaconda\hc\dataScience\table1.csv') # 绝对路径

显示数据

显示数据的行与列数

df.shape

(6, 5)

显示数据格式dtpyes

df.dtypes

Name      object
Age        int64
Sex        int64
Class      int64
Score    float64
dtype: object

显示列名

df.columns

Index(['Name', 'Age', 'Sex', 'Class', 'Score'], dtype='object')

显示前数据前2行

df.head(2)

图片

显示数据后3行

df.tail(3)
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值