目录
什么是representational bottleneck?
1.MobileNetV1
特征
专注于移动端或者嵌入式设备中的轻量级CNN网络。相比传统卷积神经网络,在准确率小幅降低的前提下大大减少模型参数与运算量。(相比VGG16准确率减少了0.9%,但模型参数只有VGG的1/32)。
优点:Depthwise Convolution
其中的Depthwise Convolution结构大大减少运算量和参数数量,如下图所示:
①而在DW卷积中,每个卷积核的channel都是等于1的(每个卷积核只负责输入特征矩阵的一个channel,故卷积核的个数必须等于输入特征矩阵的channel数,从而使得输出特征矩阵的channel数也等于输入特征矩阵的channel数)
②使用DW卷积后输出特征矩阵的channel是与输入特征矩阵的channel相等的,如果想改变/自定义输出特征矩阵的channel,那只需要在DW卷积后接上一个PW卷积即可.
③如下图所示,其实PW卷积就是普通的卷积而已(只不过卷积核大小为1)。通常DW卷积和PW卷积是放在一起使用的,一起叫做Depthwise Separable Convolution(深度可分卷积)。理论上普通卷积计算量是DW+PW卷积的8到9倍。
网络结构
其网络结构图如下所示,Conv为普通卷积,Conv dw为DW卷积,s代表stripe,其中还有两个超参数
α:宽度因子:作用是在每层均匀地稀疏网络,为每层通道乘以一定的比例,从而减少各层的通道数。常用值有1、0.75、0.5、0.25。
β:分辨率因子:其作用是在每层特征图的大小乘以一定的比例。
2.MobileNet v2
改进原因
①网络的结构就像VGG一样是个直筒型的,不像ResNet网络有shorcut之类的连接方式
②MobileNet v1网络中的DW卷积很容易训练废掉,效果并没有那么理想
特征:
MobileNet v2网络是由google团队在2018年提出的,相比MobileNet V1网络,准确率更高,模型更小。其结构如下: