前言
本文是在作者学习小土堆《Windows下PyTorch 入门深度学习环境安装与配置》系列视频后所整理,以巩固自己所学。作为初学者,若文中有不当之处,望不吝指正。
配置环境所需各软件之间的关系
Pycharm为集成开发环境,用于编写Python代码,在pycharm中配置Python解释器环境后,可执行Python程序。Python解释器是用于将代码转化成计算机可识别的符号,然后发送给CPU进行处理,所以是运行代码必不可少的。关于Python解释器的配置可以在Python官网下载自己所需的Python版本,但若今后所运行的项目对Python版本的要求不一样,则需重复安装卸载不同版本的Python解释器,十分不便,而Anaconda很好的解决了这一问题。
Anaconda是虚拟环境管理器,可以新建不同的虚拟环境,各环境之间相互独立,互不干扰。安装Anaconda后,有一个默认的base虚拟环境,其中已经安装了一些常用的包。
Pytorch、TensorFlow都是深度学习代码中可能使用到的一些包,可以在自己创建的虚拟环境中下载这些包,然后pycharm中的代码即可调用这些包,若包缺失,则代码会发生报错。
在深度学习中调用Pytorch等包时,会使用GPU(graphics processing unit 图像处理器)进行计算处理,以加速深度学习网络的训练。GUP为计算机硬件,CPU在接收到调用GPU的指令后,首先会调用软件CUDA runtime version,该软件再调用驱动程序CUDA driver version,通过驱动就可操作英伟达(NVIDIA)显卡。
以下安装以NVIDIA显卡为例,判断自己电脑是否为NVIDIA显卡,可打开任务管理器——性能,看GPU型号是否有NVIDIA字样,如下图所示。