C#常用的科学计算库演示

#VibeCoding·九月创作之星挑战赛#

1. Math.NET Numerics​​(最全面的科学计算库)

using MathNet.Numerics;
using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.Statistics;

// 数值积分
double integral = Integrate.OnClosedInterval(x => x * x, 0, 1); // 输出:0.333...

// 线性代数(矩阵运算)
var matrix = Matrix<double>.Build.DenseOfArray(new double[,] {
    {1, 2},
    {3, 4}
});
var vector = Vector<double>.Build.Dense(new double[] {5, 6});
var result = matrix.Solve(vector); // 解线性方程组 [5,6]

// 统计计算
double[] data = { 1.2, 2.3, 3.4, 4.5 };
double mean = data.Mean();         // 平均值
double stdDev = data.StandardDeviation(); // 标准差

2. ALGLIB​​(数值分析与优化)

using alglib;

// 求解微分方程
alglib.odesolverstate state;
alglib.odesolverreport rep;
double[] y0 = {1}; // 初始值
alglib.odesolverrkck(y0, 0, (double[] y, double x, double[] dy) => {
    dy[0] = -y[0]; // dy/dx = -y
}, out state, out rep);
double[] y1 = new double[1];
alglib.odesolverresults(state, out y1, out rep);

// 快速傅里叶变换(FFT)
double[] signal = {1, 2, 1, 2};
alglib.complex[] spectrum;
alglib.fftr1d(signal, out spectrum); // 输出频域结果

3. Accord.NET​​(统计与机器学习)

using Accord.Math;
using Accord.Statistics;

// 概率分布
var normal = new Accord.Statistics.Distributions.Univariate.NormalDistribution(mean: 0, stdDev: 1);
double pdf = normal.ProbabilityDensityFunction(0); // 标准正态分布在0处的密度

// 假设检验(T检验)
double[] sample1 = { 5, 7, 9, 6, 8 };
double[] sample2 = { 4, 6, 7, 5, 5 };
var tTest = new TwoSampleTTest(sample1, sample2);
Console.WriteLine($"P值: {tTest.PValue}"); // 判断差异显著性

4. ILNumerics​​(高性能数值计算)

using ILNumerics;

// 创建三维曲面图
var scene = new ILScene {
    new ILPlotCube(twoDMode: false) {
        new ILSurface((x, y) => 
            Math.Sin(x) * Math.Cos(y), 
            xmin: -5, xmax: 5, 
            ymin: -5, ymax: 5
        ) { Colormap = Colormaps.Jet }
    }
};
ILPanel panel = new ILPanel();
panel.Scene = scene; // 显示3D图形

5. NumSharp​​(类似Python NumPy的API)

using NumSharp;

// 创建NDArray并操作
var array = np.array(new double[] {1, 2, 3, 4});
var matrix = np.arange(9).reshape(3, 3); // 3x3矩阵

// 广播运算
var result = array + 10; // [11,12,13,14]

// 线性代数
var eigenvalues = np.linalg.eigvals(matrix); // 计算特征值

6. 数据可视化(OxyPlot + LiveCharts)

// OxyPlot绘制科学图表
var model = new PlotModel { Title = "函数图像" };
model.Series.Add(new FunctionSeries(Math.Sin, -10, 10, 0.1, "sin(x)"));
PlotView myPlot = new PlotView();
myPlot.Model = model;

// LiveCharts实时数据流
var chart = new CartesianChart {
    Series = new SeriesCollection {
        new LineSeries {
            Values = new ChartValues<double> { 2, 4, 6, 8 }
        }
    }
};

典型应用场景​

  1. ​信号处理​​:FFT滤波/频谱分析

  2. ​控制系统​​:微分方程求解/传递函数模拟

  3. ​统计分析​​:假设检验/回归分析

  4. ​物理仿真​​:有限元分析(FEM)/计算流体动力学(CFD)

  5. ​金融工程​​:蒙特卡洛模拟/期权定价

​提示​​:工业场景中常结合OPC UA采集实时数据,用这些库进行在线质量分析(如SPC统计过程控制)或设备健康监测(振动频谱分析)。

各库可通过NuGet安装,推荐组合方案:

  • ​基础计算​​:Math.NET + NumSharp

  • ​专业分析​​:ALGLIB + Accord.NET

  • ​可视化​​:OxyPlot + ScottPlot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

code_shenbing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值