class torch.nn.LSTM(*args, **kwargs)
对输入序列的每个元素,LSTM的每层都会执行以下计算:
hth_tht是时刻ttt的隐状态,ctc_tct是时刻ttt的细胞状态,xtx_txt是上一层的在时刻ttt的隐状态或者是第一层在时刻ttt的输入。it,ft,gt,oti_t, f_t, g_t, o_tit,ft,gt,ot 分别代表 输入门,遗忘门,细胞和输出门。
参数说明:
- input_size – 输入的特征维度,(特征向量的长度,如2048)
hidden_size – 隐状态的特征维度,(每个LSTM单元或者时间步的输出的ht的维度,单元内部有权重与偏差计算)
num_layers – 层数(和时序展开要区分开), RNN层的个数(在竖直方向堆叠的多个相同个数单元的层数)
bias – 如果为False,那么LSTM将不会使用bih,bhhb_{ih},b_{hh}bih,b