并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel()与sequential()在并行流与顺序流之间进行切换。
了解Fork/Join框架
Fork/join框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行join汇总。
采用 “工作窃取”模式(work-stealing):
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线
程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的
处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因
无法继续运行,那么该线程会处于等待状态.而在fork/join框架实现中,如果
某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子
问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程
的等待时间,提高了性能。
Fork/join一般用于大数据,数据量越大,体现越明显,数据量小的话不建议使用,因为拆分合并需要时间。因为用起来比较麻烦所以在工作中用的比较少。
在java8之前实现Fork/join需要自己写一个继承RecursiveTask的类,需要自己写拆分、合并的算法进行实现。
而在java8之后则可以任意通过 parallel()与sequential()在并行流与顺序流之间进行切换。
比如0-100000000000L的累加:
结论:当数据量比较大的时候,使用Fork/Join可以提升效率,耗费的时间比多线程短。