并行流与串行流

本文介绍了Java8中的并行流和Fork/Join框架,强调了它们在大数据处理中的效率提升。Fork/Join框架利用工作窃取模式提高性能,适合处理大量数据。Java8通过parallel()和sequential()简化了并行流的切换。当数据量大时,Fork/Join能显著缩短运算时间,但小数据量情况下可能因拆分合并开销而不适用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

并行流就是把一个内容分成多个数据块,并用不同的线程分别处理每个数据块的流。

Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。Stream API 可以声明性地通过 parallel()与sequential()在并行流与顺序流之间进行切换。

了解Fork/Join框架

Fork/join框架:就是在必要的情况下,将一个大任务,进行拆分(fork)成若干个小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行join汇总。

Fork/Join 框架与传统线程池的区别

采用 “工作窃取”模式(work-stealing):

当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线

程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。

相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的

处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因

无法继续运行,那么该线程会处于等待状态.而在fork/join框架实现中,如果

某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子

问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程

的等待时间,提高了性能。


Fork/join一般用于大数据,数据量越大,体现越明显,数据量小的话不建议使用,因为拆分合并需要时间。因为用起来比较麻烦所以在工作中用的比较少。

在java8之前实现Fork/join需要自己写一个继承RecursiveTask的类,需要自己写拆分、合并的算法进行实现。

而在java8之后则可以任意通过 parallel()与sequential()在并行流与顺序流之间进行切换。
比如0-100000000000L的累加:

 结论:当数据量比较大的时候,使用Fork/Join可以提升效率,耗费的时间比多线程短。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值