如果算法预测出的结果不太好,可以考虑以下几个方面:
获得更多的训练样本
采用更少的特征
尝试获取更多的特征
增加多项式特征
增大或减小 λ
模型评估(evaluate model)
例如房价预测,用五个数据训练出的模型能很好的拟合这几个数据,但不能泛化到新的数据。
将数据按70%、30%的比例分成两份,一份是训练集,一份是测试集。
模型选择
一种有缺陷的方法:
可以计算一阶多项式、二阶多项式、
如果算法预测出的结果不太好,可以考虑以下几个方面:
获得更多的训练样本
采用更少的特征
尝试获取更多的特征
增加多项式特征
增大或减小 λ
模型评估(evaluate model)
例如房价预测,用五个数据训练出的模型能很好的拟合这几个数据,但不能泛化到新的数据。
将数据按70%、30%的比例分成两份,一份是训练集,一份是测试集。
模型选择
一种有缺陷的方法:
可以计算一阶多项式、二阶多项式、