吴恩达机器学习笔记十六 如何debug一个学习算法 模型评估 模型选择和训练 交叉验证测试集

本文讨论了当算法预测效果不佳时,如何通过增加训练样本、选择适当特征、多项式特征调整以及采用合理的模型评估和选择方法来改善模型泛化能力。特别强调了将数据分为训练集、交叉验证集和测试集进行有效分析的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 如果算法预测出的结果不太好,可以考虑以下几个方面:

获得更多的训练样本

采用更少的特征

尝试获取更多的特征

增加多项式特征

增大或减小 λ 

模型评估(evaluate model)

例如房价预测,用五个数据训练出的模型能很好的拟合这几个数据,但不能泛化到新的数据。

将数据按70%、30%的比例分成两份,一份是训练集,一份是测试集。

模型选择

一种有缺陷的方法:

可以计算一阶多项式、二阶多项式、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值