DeepSeek 满血版 8卡 H20 141GB 并发压力测试,体验极致性能!

前段时间技术同事完成了对中小模型的测试验证。分别测试了 RTX 5000 Ada和RTX 5880 Ada 显卡运行 DeepSeek 7B/14B/32B 等模型的并发性能与部署效率

近期我们针对 DeepSeek 满血版 671B 进行了并发性能的测试,搭载的是 8张 NVIDIA H20(单卡显存141GB)的服务器,我们来看看测试结果。

测试版本: 

DeepSeek-R1 671B

测试框架:vllm

测试环境:

GPU:H20*8(单卡141GB,共1128GB)

CPU:英特尔 至强® Platinum 8480+ *2

内存:2T DDR5  硬盘:3.84TB

测试数据仅供参考:

图片

我们在压力并发测试中分别测试了 2 种常见的使用场景:

1、问答对话场景

图片

特点:直接回答用户提出的问题,通常基于预定义的规则、知识库或简单检索。

测试结果:

并发数在80以内,吞吐率可以达到>9 tokens/s,在简单对话场景的表现优秀。

2、模拟RAG场景

图片

特点:结合检索外部知识库与生成模型,动态生成精准、上下文相关的答案。

测试结果:

基本可以满足32个并发,吞吐率>6 tokens/s。可以流畅地对海量文档和数据库进行检索并输出内容。

测试小结

  • 对话问答场景:基本可以满足 80 个并发。当并发数<80 时,Tokens/s>9。

  • 模拟RAG场景:基本可以满足 32 个并发。当并发数<32 时,Tokens/s>6。

  • 后端服务稳定运行,配合前端实际使用体验效果优秀,延迟很低。

综上所述,使用8卡H20配置进行 DeepSeek 671B 的满血版本地化部署,能够很好地应对企业高并发的实际使用场景,想用671B的建议直接上!

图片

### 关于 H20 96G 8-GPU DeepSeek R1 671B 性能评测报告 #### 测试环境配置 在评估 H20 96G 8-GPUDeepSeek R1 671B 模型的支持能时,硬件平台的选择至关重要。H20 是一种高性能 GPU,其内存容量为 96GB,适合处理大规模参数量的模型。DeepSeek R1 671B 经过量化后可以减少到约 131GB 的存储需求[^1],这使得单张 H20 能够承载部分分片化的模型权重。 #### 多机部署与上下文扩展 由于 DeepSeek R1 671B 原生支持的最大上下文长度仅为 4K,在实际应用中可能不足以满足复杂任务的需求。因此,通常采用多机分布式部署的方式扩展上下文窗口大小。具体而言,通过将模型切分为多个子模块并分配至不同节点上的 GPU 运行,可有效提升最大上下文长度至更高水平[^3]。这种架构不仅解决了上下文截断问题,还允许更复杂的推理场景得以实现。 #### 吞吐量分析 针对较低成本下的高吞吐目标,相比论文提出的基于 H800 集群的大规模并行化方案(需消耗多达 352 张 H800 显),利用少量 H20 设备构建的小型集群同样能达到不错的效率表现[^2]。实验表明,在配备有八块 H20 96G 的服务器上执行批量推理操作时,每秒查询次数 (QPS) 可维持在一个较为理想的范围内,尽管绝对数值低于顶级配置的结果,但对于许多商业用途已足够胜任。 #### 成本效益考量 考虑到经济因素的影响,使用 H20 构建解决方案相较于依赖昂贵的 H800 更具吸引。一方面减少了初始投资金额;另一方面也降低了长期运营过程中的电消耗费用。与此同时,借助先进的软件框架和技术手段优化资源利用率,则进一步增强了整体性价比优势。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/r1-671b") model = AutoModelForCausalLM.from_pretrained("deepseek/r1-671b", device_map="auto") input_text = "Evaluate the performance of..." inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 上述代码片段展示了如何加载预训练好的 DeepSeek R1 671B 并在其基础上生成新文本序列的一个简单例子。注意这里启用了自动设备映射功能以便更好地适配当前可用硬件条件。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值