Paper的任务
提出一种新的方法,名为Contextual Prompt Learning (CoPL),用于改进视觉-语言理解模型的泛化能力。
任务的科学问题
- 现有方法依赖全局图像特征,可能无法捕捉到图像中的局部细节
- 现有方法中,提示向量通常被赋予相同的权重,这忽略了不同提示对于不同图像可能具有不同的相关性。
(提示向量是用于增强模型对特定任务理解的向量表示,等权重问题指的是这些向量在模型中被不区分地同等对待。)
challenges
- 局部特征的利用
- 动态提示向量的生成:如何根据图像的局部上下文动态生成和加权提示向量,以提高模型对视觉-语言任务的适应性。
- 上下文信息的融合:如何有效地将图像的上下文信息融合到提示学习过程中,以提升模型对图像内容的理解。
motivation
- 提高泛化能力:现有视觉-语言模型在处理未见过的类别或跨数据集时泛化能力有限,研究者希望提升模型在这些情况下的性能。
- 解决局部特征利用不足:现有模型可能过于依赖全局图像特征,而忽略了对局部特征的利用,特别是在细粒度识别任务中。
- 动态提示向量的生成:为了使模型能够根据图像内容动态调整提示向量,以更好地捕捉图像的语义信息。
方法和框架
方法
图像和