[paper阅读笔记][AAAI2024]CoPL: Contextual Prompt Learning for Vision-Language Understanding

Paper的任务

提出一种新的方法,名为Contextual Prompt Learning (CoPL),用于改进视觉-语言理解模型的泛化能力。

任务的科学问题

  1. 现有方法依赖全局图像特征,可能无法捕捉到图像中的局部细节
  2. 现有方法中,提示向量通常被赋予相同的权重,这忽略了不同提示对于不同图像可能具有不同的相关性。

(提示向量是用于增强模型对特定任务理解的向量表示,等权重问题指的是这些向量在模型中被不区分地同等对待。)

challenges

  1. 局部特征的利用
  2. 动态提示向量的生成:如何根据图像的局部上下文动态生成和加权提示向量,以提高模型对视觉-语言任务的适应性。
  3. 上下文信息的融合:如何有效地将图像的上下文信息融合到提示学习过程中,以提升模型对图像内容的理解。

motivation

  1. 提高泛化能力:现有视觉-语言模型在处理未见过的类别或跨数据集时泛化能力有限,研究者希望提升模型在这些情况下的性能。
  2. 解决局部特征利用不足:现有模型可能过于依赖全局图像特征,而忽略了对局部特征的利用,特别是在细粒度识别任务中。
  3. 动态提示向量的生成:为了使模型能够根据图像内容动态调整提示向量,以更好地捕捉图像的语义信息。

方法和框架

方法 

图像和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瘦小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值