好的,用户现在问的是Dunn’s test和Bonferroni校正的SPSS界面操作。首先,我需要确认用户的需求。他们可能是在进行多重比较,比如在Kruskal-Wallis检验之后需要成对比较,而Dunn’s test正是用于这种情况的非参数方法。Bonferroni校正是用来控制多重比较的误差,避免假阳性结果。
接下来,用户可能已经完成了Kruskal-Wallis检验,得到了显著的结果,现在需要进一步比较哪些组别之间存在差异。他们可能不太熟悉如何在SPSS中执行这些后续分析,特别是因为SPSS本身没有直接内置的Dunn’s test选项,需要手动操作或者使用语法。
然后,我需要考虑用户的知识水平。他们可能对SPSS的界面操作有一定了解,但可能不熟悉编写语法或者使用插件。因此,提供两种方法:使用非参数检验的界面操作和通过语法。同时,Bonferroni校正在SPSS中相对常见,可能在多重比较的选项里能找到,但用户可能不知道具体位置。
另外,要注意用户可能没有提到他们使用的是哪个版本的SPSS,但一般来说,界面操作在不同版本中变化不大,但语法部分可能需要确认。同时,提醒用户安装必要的插件或扩展包,比如R插件,以便运行Dunn’s test,这点很重要,因为默认可能没有安装。
最后,需要强调Bonferroni校正的优缺点,比如虽然简单但过于保守,可能增加II类错误的风险,建议用户根据情况选择其他方法如Holm校正,但用户可能只需要基本操作,所以保持答案简洁,同时给出关键点。
以下是SPSS中实施Dunn’s检验和Bonferroni校正的界面操作指南:
=== “Dunn’s检验操作步骤(需要R插件)”
准备数据:确保已安装R插件(Extensions → Install R Plugin)
调用分析:
菜单栏选择:Analyze → Nonparametric Tests → Independent Samples
在"Fields"选项卡选择检验变量和分组变量
在"Settings"选项卡选择:
Customize tests → Kruskal-Wallis 1-way ANOVA
勾选"Pairwise comparisons" → 选择"Dunn’s test"
设置参数:
在"Multiple comparisons"中选择调整方法(如Bonferroni)
选择输出格式(建议勾选描述性统计)
=== “Bonferroni校正操作(两种方式)”
方式1:事后检验界面
在ANOVA分析(如单因素方差分析)中:
勾选"Post Hoc" → 选择需要比较的变量
在"Adjustment"下拉菜单中选择Bonferroni
方式2:手动计算
原始p值乘以比较次数:
spss
复制代码
COMPUTE adj_p = p_value * 比较次数.
EXECUTE.
使用转换→计算变量实现
=== “语法参考”
spss
复制代码
-
Dunn’s test语法(需R插件):
NPAR TESTS
/KRUSKAL-WALLIS=连续变量 BY 分组变量
/MISSING LISTWISE
/METHOD=EXACT TIMER(5). -
Bonferroni校正语法:
GLM 因变量 BY 自变量
/POSTHOC=自变量(BONFERRONI)
/PRINT=DESCRIPTIVE.
=== “注意事项”
建议优先使用Holm校正(比Bonferroni更高效)
组间比较次数计算公式:k(k-1)/2(k为组数)
当使用Dunn’s检验时,效应量建议报告:
𝑟
𝑍
𝑁
r=
N
Z
其中Z为检验统计量,N为总样本量
输出解读要点:
校正后p值标记为"Adj. Sig."
效应量绝对值>0.3为中等效应,>0.5为大效应
若无法安装R插件,替代方案:
使用Mann-Whitney U检验手动进行两两比较
通过转换→对个案的值排序计算秩次
手动进行Bonferroni校正(原始α=0.05/比较次数)