开源仅一周,《Happy-LLM》从零开始的大语言模型原理与实践教程 GitHub star数量已经突破2.3k,成为大模型学习圈的“顶流教程”!
关于教程
这是一个专门为满足学习者对大语言模型更深入理解需求而精心打造的"从零开始的大模型原理与实践教程"。
与self-llm注重模型部署和应用不同,Happy-LLM更聚焦于大语言模型的理论基础和从零开始的训练过程,为学习者提供了一个深入了解LLM底层机制的绝佳机会。短短3天就在GitHub上斩获2000+星标,成为大模型学习者的"硬核圣经"!
PDF版本开放下载
硬核内容全覆盖,从基石到前沿,一站通关!
不同于市面上零散的教程,Happy-LLM提供了一个完整的学习框架:从NLP基础概念到Transformer架构深度解析,从预训练语言模型到现代LLM的演进历程,从理论推导到PyTorch手撸代码实现,从模型训练到RAG、Agent等前沿应用。
Happy-LLM完整学习路径
🔰 基础知识篇(第1-4章)
第1章:NLP基础概念
-
自然语言处理的基本任务和发展历程
-
为非NLP背景的学习者建立基础认知
第2章:Transformer架构
-
深入理解注意力机制的原理和数学推导
-
Encoder-Decoder架构的深度解析
-
手把手代码实现Transformer
第3章:预训练语言模型
-
全面掌握Encoder-Only、Encoder-Decoder、Decoder-Only三大架构对比
-
BERT、GPT等经典模型的设计思想
-
现代主流LLM的架构演进
第4章:大语言模型
-
深度理解LLM的定义、特点和训练策略
-
涌现能力和规模效应分析
-
LLM的整体训练流程梳理
🚀 实战应用篇(第5-7章)
第5章:动手搭建LLM
-
亲手实现基于PyTorch从零搭建完整的LLaMA2模型
-
训练Tokenizer和预训练小型LLM
-
完整的训练代码和调试技巧
第6章:大模型训练实践
-
掌握全流程从预训练到有监督微调(SFT)
-
LoRA/QLoRA等高效微调技术
-
分布式训练和性能优化
第7章:大模型应用
-
实战前沿RAG(检索增强生成)系统搭建
-
Agent智能体的设计和实现
-
模型评测方法和基准数据集
教程的具体内容:
PDF版本开放下载
现在,《Happy-LLM》完整 PDF 正式开放下载,一起快乐学习大模型!
PDF版本开放下载