318-一种基于Koopman算子的模型预测控制MPC控制四旋翼无人机开发 简介: 一种基于Koopman算子和扩展

文章标题:基于Koopman算子和扩展动态模式分解的四旋翼无人机模型预测控制(MPC)开发

一、引言

随着无人机技术的快速发展,四旋翼无人机因其灵活性和稳定性而受到广泛关注。为了实现更高效、更精确的控制,研究者们一直在探索新的控制方法和算法。本文提出了一种基于Koopman算子和扩展动态模式分解(EDMD)的四旋翼无人机学习和控制的新型数据驱动方法。该方法旨在解决传统欧拉角表示方向时可能出现的奇异性问题,并设计了一种基于所提出的EDMD模型的线性模型预测控制器(MPC),以跟踪敏捷参考轨迹。

二、Koopman算子和EDMD模型

Koopman算子是一种用于描述动态的强大工具,能够在线性空间中表示非线性动力。而扩展动态模式分解(EDMD)是一种从数据中提取动态模式的有效方法。我们使用这两种技术构建了四旋翼无人机的数据驱动模型。

三、解决欧拉角表示方向的奇异性问题

在传统的四旋翼无人机控制中,通常使用欧拉角来表示方向。然而,这种方法在处理某些动态时可能涉及奇异性问题。为了解决这个问题,我们采用了一种基于非线性基本拓扑的物理信息观测器,使用旋转矩阵直接表示方向动力学。这样,我们可以在SE(3)流形上获得非线性四旋翼动力学的提升线性表示。

四、EDMD模型的应用和预测

我们利用EDMD模型对四旋翼无人机的动力学进行建模。该模型可以准确预测无人机的行为,并且可以推广到几个验证集。这使得我们能够更好地理解和控制四旋翼无人机的动态行为。

五、基于EDMD模型的MPC控制器设计

基于所提出的EDMD模型,我们设计了一种线性模型预测控制器(MPC)。该控制器能够以100Hz的速度运行,并能够跟踪敏捷参考轨迹。通过仿真实验,我们验证了所提出的MPC控制器的有效性和性能。

六、仿真结果和分析

仿真结果表明,所提出的MPC控制器可以有效地控制四旋翼无人机,实现精确的轨迹跟踪。同时,该控制器具有良好的稳定性和鲁棒性,能够在不同环境和条件下实现高效的飞行控制。

七、结论

本文提出了一种基于Koopman算子和EDMD的四旋翼无人机学习和控制的新型数据驱动方法。该方法解决了传统欧拉角表示方向时可能出现的奇异性问题,并设计了一种基于所提出的EDMD模型的MPC控制器。仿真结果证明了该方法的有效性和性能,为四旋翼无人机的精确控制和高效飞行提供了新的思路和方法。未来,我们将进一步优化该模型和控制器,以提高四旋翼无人机的性能和稳定性。
318-一种基于Koopman算子的模型预测控制MPC控制四旋翼无人机开发
简介:
一种基于Koopman算子和扩展动态模式分解(EDMD)的四旋翼无人机学习和控制的新型数据驱动方法。
基于欧拉角(表示方向)等传统方法构建EDMD的观测器已知涉及奇异性。
为了解决这个问题,我们使用一组基于非线性基本拓扑的物理信息观测器。
我们使用旋转矩阵直接表示方向动力学,并在SE(3)流形上获得非线性四旋翼动力学的提升线性表示。
该EDMD模型可以准确预测,并且可以推广到几个验证集。
此外,我们设计了一种基于所提出的EDMD模型的线性模型预测控制器(MPC),以跟踪敏捷参考轨迹。
仿真结果表明,所提出的MPC控制器可以以100Hz的速度运行,并且能够以良好的准确性跟踪任意参考轨迹。
注:该模型为matlab脚本,附带相应参考文献,代码可正常直接运行

基于Koopman算子控制与预测通常需要使用非线性系统的Koopman算子,因为非线性系统的演化很难用线性算子表示。下面是一个基于Koopman算子的非线性系统控制与预测的示例代码: ```python import numpy as np from sklearn.kernel_approximation import RBFSampler from scipy.linalg import pinv # 定义非线性系统的动力学方程 def f(x): return np.array([x[0] + 0.1 * x[0] * x[1], x[1] - 0.1 * x[0] * x[1]]) # 定义Koopman算子的RBF核参数 rbf_sigma = 0.2 rbf_n_components = 100 # 生成训练数据 train_x = np.random.uniform(low=-1, high=1, size=(500, 2)) # 计算Koopman算子的RBF特征 rbf_features = RBFSampler(gamma=1.0 / (2 * rbf_sigma ** 2), n_components=rbf_n_components) train_features = rbf_features.fit_transform(train_x) # 计算Koopman算子的近似矩阵 K = np.dot(train_features.T, train_features) / train_features.shape[0] # 计算Koopman算子的逆矩阵 K_inv = pinv(K) # 定义控制变量 u = np.array([0.5, 0.5]) # 定义初始状态 x = np.array([0.1, 0.1]) # 执行控制循环 for i in range(10): # 计算状态演化 x_feature = rbf_features.transform(x.reshape(1, -1)) x_koopman = np.dot(K_inv, np.dot(train_features.T, x_feature.T)).reshape(-1) x = f(x) + np.dot(u, i) - x_koopman # 输出当前状态 print("x_{} = {}".format(i, x)) # 执行预测循环 x_predict = np.array([0.1, 0.1]) for i in range(10): # 计算状态演化 x_feature = rbf_features.transform(x_predict.reshape(1, -1)) x_koopman = np.dot(K_inv, np.dot(train_features.T, x_feature.T)).reshape(-1) x_predict = f(x_predict) + np.dot(u, i) - x_koopman # 输出预测状态 print("x_predict_{} = {}".format(i, x_predict)) ``` 在这个示例代码中,我们首先定义了一个非线性系统的动力学方程f(x),表示状态向量x的演化。然后定义了Koopman算子的RBF核参数,生成了训练数据train_x,计算了Koopman算子的近似矩阵K逆矩阵K_inv。接下来,我们执行了一个控制循环,每次循环中计算状态向量x的演化,并输出当前状态。在控制循环后,我们执行了一个预测循环,每次循环中计算状态向量x_predict的演化,并输出预测状态。在控制预测循环中,我们使用了Koopman算子的逆矩阵K_inv来将状态向量转化为Koopman空间中的向量,然后再进行计算控制/预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值