文章标题:基于Koopman算子和扩展动态模式分解的四旋翼无人机模型预测控制(MPC)开发
一、引言
随着无人机技术的快速发展,四旋翼无人机因其灵活性和稳定性而受到广泛关注。为了实现更高效、更精确的控制,研究者们一直在探索新的控制方法和算法。本文提出了一种基于Koopman算子和扩展动态模式分解(EDMD)的四旋翼无人机学习和控制的新型数据驱动方法。该方法旨在解决传统欧拉角表示方向时可能出现的奇异性问题,并设计了一种基于所提出的EDMD模型的线性模型预测控制器(MPC),以跟踪敏捷参考轨迹。
二、Koopman算子和EDMD模型
Koopman算子是一种用于描述动态的强大工具,能够在线性空间中表示非线性动力。而扩展动态模式分解(EDMD)是一种从数据中提取动态模式的有效方法。我们使用这两种技术构建了四旋翼无人机的数据驱动模型。
三、解决欧拉角表示方向的奇异性问题
在传统的四旋翼无人机控制中,通常使用欧拉角来表示方向。然而,这种方法在处理某些动态时可能涉及奇异性问题。为了解决这个问题,我们采用了一种基于非线性基本拓扑的物理信息观测器,使用旋转矩阵直接表示方向动力学。这样,我们可以在SE(3)流形上获得非线性四旋翼动力学的提升线性表示。
四、EDMD模型的应用和预测
我们利用EDMD模型对四旋翼无人机的动力学进行建模。该模型可以准确预测无人机的行为,并且可以推广到几个验证集。这使得我们能够更好地理解和控制四旋翼无人机的动态行为。
五、基于EDMD模型的MPC控制器设计
基于所提出的EDMD模型,我们设计了一种线性模型预测控制器(MPC)。该控制器能够以100Hz的速度运行,并能够跟踪敏捷参考轨迹。通过仿真实验,我们验证了所提出的MPC控制器的有效性和性能。
六、仿真结果和分析
仿真结果表明,所提出的MPC控制器可以有效地控制四旋翼无人机,实现精确的轨迹跟踪。同时,该控制器具有良好的稳定性和鲁棒性,能够在不同环境和条件下实现高效的飞行控制。
七、结论
本文提出了一种基于Koopman算子和EDMD的四旋翼无人机学习和控制的新型数据驱动方法。该方法解决了传统欧拉角表示方向时可能出现的奇异性问题,并设计了一种基于所提出的EDMD模型的MPC控制器。仿真结果证明了该方法的有效性和性能,为四旋翼无人机的精确控制和高效飞行提供了新的思路和方法。未来,我们将进一步优化该模型和控制器,以提高四旋翼无人机的性能和稳定性。
318-一种基于Koopman算子的模型预测控制MPC控制四旋翼无人机开发
简介:
一种基于Koopman算子和扩展动态模式分解(EDMD)的四旋翼无人机学习和控制的新型数据驱动方法。
基于欧拉角(表示方向)等传统方法构建EDMD的观测器已知涉及奇异性。
为了解决这个问题,我们使用一组基于非线性基本拓扑的物理信息观测器。
我们使用旋转矩阵直接表示方向动力学,并在SE(3)流形上获得非线性四旋翼动力学的提升线性表示。
该EDMD模型可以准确预测,并且可以推广到几个验证集。
此外,我们设计了一种基于所提出的EDMD模型的线性模型预测控制器(MPC),以跟踪敏捷参考轨迹。
仿真结果表明,所提出的MPC控制器可以以100Hz的速度运行,并且能够以良好的准确性跟踪任意参考轨迹。
注:该模型为matlab脚本,附带相应参考文献,代码可正常直接运行