矩阵分解与梯度下降

目录

1、矩阵分解(矩阵乘法回顾)

2、梯度下降

3、矩阵算法推导

4、python代码实现


1、矩阵分解

①为何学习矩阵分解

矩阵算法就是将用户和产品矩阵中的数据,分解成两个矩阵(用User矩阵和Item矩阵),两个矩阵相乘得到的结果就是预测评分。 

矩阵分解就是把原来的大矩阵,近似的分解成小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵

具体来说就是,假设用户物品的评分矩阵A是m乘n维,即一共有m个用户,n个物品.通过一套算法转化为两个矩阵U和V,矩阵U的维度是m乘k,矩阵V的维度是n乘k。

就如同我们现在需要学习的推荐系统,这里面有缺失得评分,我们需要通过矩阵分解,算出这个缺失得评分

 我们的目的就是运用已知得评分来算出未知的评分

②回顾矩阵乘法

   大写字母表示矩阵,小写字母表示具体的值

   矩阵乘法有条件是第一个矩阵的列与第二个矩阵的行数相等

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值