目录
1、矩阵分解(矩阵乘法回顾)
2、梯度下降
3、矩阵算法推导
4、python代码实现
1、矩阵分解
①为何学习矩阵分解
矩阵算法就是将用户和产品矩阵中的数据,分解成两个矩阵(用User矩阵和Item矩阵),两个矩阵相乘得到的结果就是预测评分。
矩阵分解就是把原来的大矩阵,近似的分解成小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵
具体来说就是,假设用户物品的评分矩阵A是m乘n维,即一共有m个用户,n个物品.通过一套算法转化为两个矩阵U和V,矩阵U的维度是m乘k,矩阵V的维度是n乘k。
就如同我们现在需要学习的推荐系统,这里面有缺失得评分,我们需要通过矩阵分解,算出这个缺失得评分
我们的目的就是运用已知得评分来算出未知的评分
②回顾矩阵乘法
大写字母表示矩阵,小写字母表示具体的值
矩阵乘法有条件是第一个矩阵的列与第二个矩阵的行数相等