spark-hadoop安装避坑&spark 开发环境避坑

本文介绍了配置Hadoop时避免将HADOOP_CONF_DIR加入PATH的原因,以及Spark提交时注意脚本与shell中master参数的一致性对资源占用的影响。在Standalone模式下,通过设置--confspark.cores.max和--executor-cores来控制executor的数量和内存。此外,还分享了在Jupyter中使用Scala的两种方法:Apache Toree和almond,以及它们的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、在配置hadoop时不要将HADOOP_CONF_DIR加入到PATH中去,否则会造成只能从hdfs中读数,要从本地读数的就没了

2、使用spark-submit时,jar包中(或脚本文件中)的master会覆盖shell的master参数,因此当发现spark程序占用异常时,可查下这两处的配置!!!

3、standalone模式下使用:
–conf spark.cores.max=32 --executor-memory 2g --executor-cores 32来控制CPU和内存资源,如上executor的数量为"spark.cores.max=32"/–executor-cores 32=1,内存使用为1*2=2g。否则,默认情况下会满核使用。

4、spark关于在jupyter中使用scala的安装配置,我用过两种方式,

  1. Apache Toree
    这个比较方便,安装时不会下载其他依赖的包,直接套用spark安装包中的scala,启动jupyter时配置sparkcontext参数即可,比较轻量
  2. almond
    这个相对上面来讲会下载很多依赖包,并且要让almond的版本和spark-scala的版本对齐,不能乱下,我当时使用这个是因为上面那种方案jupyter的cell输出中和后台shell中没有任何的报错信息,调试不了才用的这个,很玄学。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值