在数学和物理学中,倒三角符号 "∇" 通常代表梯度算子(Gradient operator),表示对多元函数在各个坐标方向上的偏导数组成的向量。
在策略梯度方法中,当我们写 时,这里的倒三角 "∇" 表示的是关于参数θ的梯度,也就是策略函数 J 关于参数θ的偏导数向量,这表示了为了最大化目标函数 J,策略参数应该如何变化。在强化学习中,J(θ) 通常指的是期望累积奖励,策略梯度的目的就是通过更新策略参数来最大化这个期望累积奖励。
在数学和物理学中,倒三角符号 "∇" 通常代表梯度算子(Gradient operator),表示对多元函数在各个坐标方向上的偏导数组成的向量。
在策略梯度方法中,当我们写 时,这里的倒三角 "∇" 表示的是关于参数θ的梯度,也就是策略函数 J 关于参数θ的偏导数向量,这表示了为了最大化目标函数 J,策略参数应该如何变化。在强化学习中,J(θ) 通常指的是期望累积奖励,策略梯度的目的就是通过更新策略参数来最大化这个期望累积奖励。