强化学习中rollouts和episodes的区别

本文解释了强化学习中,Episode作为智能体与环境完整交互的单元,以及Rollouts在策略梯度方法中的作用,即通过模拟交互收集数据以优化策略的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Episodes(片段)

在强化学习中,一个episode是指智能体(Agent)与环境(Environment)之间一次完整的交互序列。这个序列从智能体开始观察环境状态开始,然后根据其策略选择一个动作并执行,环境会给出新的状态和奖励,这个过程会一直重复,直到达到某种终止状态,比如游戏结束、任务完成或达到预定的步数。每个episode都是独立的,结束后会重置环境并开始新的episode

例如,在一个简单的迷宫游戏中,一个episode可能包括智能体从起点开始,经过一系列的移动,最终达到终点的整个过程。

Rollouts(模拟轨迹)

Rollouts通常指的是在执行策略梯度或其他基于模拟的强化学习方法时,智能体在环境中进行的一系列模拟交互步骤。这些步骤用于收集数据,以评估或改进当前的策略。一个rollout可以包含一个或多个完整的episodes,或者只是一个episode的一部分(在实际应用中,通常一个rollout只包含一个episode的数据)。

在训练过程中,我们可能会执行多个rollouts来收集足够的数据,以便更新智能体的策略。每个rollout都会根据当前的策略生成一组新的交互数据(状态、动作、奖励等),这些数据随后用于计算梯度并更新策略。

总结

  • Episodes是智能体与环境之间一次完整的交互过程。
  • Rollouts是在训练过程中,智能体根据当前策略进行的一系列模拟交互步骤,用于收集数据和评估策略。一个rollout可以包含一个或多个episodes的数据。
### 关于强化学习中模仿学习的概念、方法应用 #### 概念定义 模仿学习(Imitation Learning, IL)属于强化学习的一个分支,旨在使智能体通过观察专家的行为来学习执行特定任务的能力。这种方法不同于传统的试错机制,在缺乏大量标注数据的情况下尤为有用[^4]。 #### 主要方法 1. **行为克隆** 行为克隆是最简单的模仿学习形式之一,它直接从专家演示的数据集中训练一个映射函数,该函数将状态映射到相应的行动上。然而,这种简单的方式容易受到分布偏移的影响——即当智能体遇到未曾见过的状态时可能会表现不佳。 2. **逆向强化学习 (Inverse Reinforcement Learning, IRL)** 与直接复制动作不同的是,IRL试图推断出背后隐藏的目标或奖励函数,使得所学得的政策能够再现示范者的表现。这不仅限定了具体的路径选择还允许泛化至未见场景之中。 3. **DAGGER算法** DAGGER(Dataset Aggregation Algorithm) 是一种迭代式的改进方案,用于解决行为克隆中存在的偏差累积问题。在这个过程中,模型会周期性地请求专家指导以修正错误决策,并将其加入新的训练集当中继续优化直至收敛稳定为止。 ```python def dagger_algorithm(expert_policy, initial_dataset): dataset = initial_dataset.copy() while not converged: policy_model.train(dataset) new_states = collect_rollouts(policy_model) expert_actions = get_expert_advice(new_states, expert_policy) dataset.extend(zip(new_states, expert_actions)) ``` #### 应用实例 - **自动驾驶汽车**:车辆可以基于人类驾驶员的操作记录来进行驾驶技能的学习; - **机器人操作**:工业机械臂可以通过观看熟练工人完成装配工作从而掌握相似的任务流程; - **虚拟助手/游戏角色**:NPC可以根据真实玩家的游戏风格做出更加自然合理的反应;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值