一、977. 有序数组的平方
文档讲解:https://programmercarl.com/0977.%E6%9C%89%E5%BA%8F%E6%95%B0%E7%BB%84%E7%9A%84%E5%B9%B3%E6%96%B9.html
视频讲解:https://www.bilibili.com/video/BV1QB4y1D7ep
LeetCode题目:https://leetcode.cn/problems/squares-of-a-sorted-array/
思路:
双指针法
双指针法,起始端和终止端各放一个指针(因为数组的最大值肯定是在两端),比较两个指针的大小,每次选出大的,然后依次放入新数组中。
代码:
方法一:
class Solution {
public int[] sortedSquares(int[] nums) {
int left = 0, right = nums.length - 1;
int[] result = new int[nums.length];
int index = result.length - 1;
while (left <= right) {
if (nums[left] * nums[left] > nums[right] * nums[right]) {
result[index] = nums[left]* nums[left];
index--;
++left;
} else {
result[index] = nums[right]* nums[right];
index--;
--right;
}
}
return result;
}
}
需要注意点:
-
index–也可以放到result[]里面;
-
++left
和left++
都能正确地实现递增left
的目的,但使用++left
可以使代码看起来更简洁和直接,因为它立即反映了left
的更新状态
- 时间复杂度:O(n)
- 空间复杂度:
二、209. 长度最小的子数组
文档讲解:https://programmercarl.com/0209.%E9%95%BF%E5%BA%A6%E6%9C%80%E5%B0%8F%E7%9A%84%E5%AD%90%E6%95%B0%E7%BB%84.html
视频讲解:https://www.bilibili.com/video/BV1tZ4y1q7XE
LeetCode题目:https://leetcode.cn/problems/minimum-size-subarray-sum/
思路:
滑动窗口
窗口就是满足和>=target的长度最小的连续子数组
窗口的起始位置如何移动:如果当前窗口的值大于等于s了,窗口就要向前移动了(也就是该缩小了)。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
代码:
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int left=0, sum=0, result=Integer.MAX_VALUE;
for(int right=0;right<nums.length;right++){
sum+=nums[right];
while(sum>=target){
result = Math.min(result, right-left+1);
sum-= nums[left++];
}
}
return result ==Integer.MAX_VALUE?0:result;
}
}
需要注意点:
虽然是两层循环,但是时间复杂度是看每个元素被操作的次数。
每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n 也就是O(n)。
- 时间复杂度:O(n)
- 空间复杂度:O(1)