- 博客(7)
- 收藏
- 关注
原创 杀死GPU进程并释放显存
kill -9 PID 可用于杀死GPU进程若杀死进程后显存仍然占用,可用命令fuser -v /dev/nvidia* 查找占用GPU资源的PID,然后执行kill -9 PID结束进程,这样就可以释放内存了。 ...
2018-08-22 10:04:23
22818
转载 caffe 中的特殊层
slice:在某一个维度,按照给定的下标,blob拆分成几块。比如要拆分channel,总数50,下标为10,20,30,40,那就是分成5份,每份10个channel,输出5个layer。concat:在某个维度,将输入的layer组合起来,是slice的逆过程。split:将blob复制几份,分别给不同的layer,这些上层layer共享这个blob。tile:将blob的某个维度
2017-09-28 10:34:55
878
转载 DenseNet结构
什么是密集连接(Dense Connectivity)?什么是Densenet架构?什么是密集块(Dense Block)?原文链接 http://www.sohu.com/a/190350415_390227
2017-09-18 14:55:41
2383
转载 为什么ResNet和DenseNet可以这么深?一文详解残差块为何有助于解决梯度弥散问题
为什么ResNet和DenseNet可以这么深?一文详解残差块为何有助于解决梯度弥散问题原标题:为什么ResNet和DenseNet可以这么深?一文详解残差块为何有助于解决梯度弥散问题。雷锋网按:本文作者Professor ho,原文载于其知乎主页,雷锋网获其授权发布。传统的“提拉米苏”式卷积神经网络模型,都以层叠卷积层的方式提高网络深度,从而提高识别精度。但层
2017-09-16 11:03:14
3954
转载 DenseNet 网络
DenseNet 是一种具有密集连接的卷积神经网络。在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集,而该层所学习的特征图也会被直接传给其后面所有层作为输入。下图是 DenseNet 的一个示意图。如果记第 l 层的变换函数为 H_l(通常对应于一组或两组 Batch-Normalization,ReLU 和 Convolution 的操作
2017-09-16 10:25:26
5603
转载 opencv 中关于图形显示的函数
1、 cv2.imread():读入图片,共两个参数,第一个参数为要读入的图片文件名,第二个参数为如何读取图片,包括cv2.IMREAD_COLOR:读入一副彩色图片;cv2.IMREAD_GRAYSCALE:以灰度模式读入图片;cv2.IMREAD_UNCHANGED:读入一幅图片,并包括其alpha通道。2、cv2.imshow():创建一个窗口显示图片,共两个参数,第一个参数
2017-09-05 17:28:23
632
转载 Python命令行解析argparse常用语法使用简介
原文链接 http://www.sijitao.net/2000.htmlpython中的命令行解析最简单最原始的方法是使用sys.argv来实现,更高级的可以使用argparse这个模块。argparse从python 2.7开始被加入到标准库中,所以如果你的python版本还在2.7以下,那么需要先手动安装。基本使用import argparseparser=argparse
2017-09-04 17:07:57
407
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人