- 博客(223)
- 资源 (4)
- 收藏
- 关注
原创 java 使用 spring AI 实战 RAG (Chroma 向量数据库+Advisor)
我这里用的 :ollama+ qwen 大家可以根据自己的环境自行更改Windows版本Linux版本。
2025-09-04 14:10:35
444
2
原创 Linux环境下多个docker容器网络访问不通的问题
先查看是不是自己防火墙的问题,我这里防火墙的端口都已开放了不是这个问题。找到dify的api容器 和 xinference容器。,以后哪个容器访问不到它,就将它加入一下相关网络就行。访问不到,但是我在浏览器和服务器上访问时可以访问的。
2025-08-05 09:25:58
257
原创 Linux安装Xinference
Xinference) 是一个开源平台,用于简化各种 AI 模型的运行和集成。借助Xinference,我们可以使用任何开源LLM嵌入模型和多模态模型在云端或本地环境中运行推理,并创建强大的 AI 应用。和Ollama。
2025-08-04 14:21:04
905
原创 Linux安装部署Dify+配置ollama私有化的deepseek-r1:7b模型+配置Xinference私有化的Embedding模型
可视化工作流编排:通过零代码拖拽式界面,无需编写代码就能构建复杂的AI工作流程,降低开发门槛,提高开发效率。多模型支持:可无缝集成GPT系列、Llama、Mistral等数百种语言模型,兼容OpenAI API兼容的私有化模型,也支持本地部署的LLaMA2、ChatGLM3等开源模型,让企业能根据业务需求和成本灵活选择。RAG增强检索。
2025-08-04 10:30:38
1323
原创 github代理
本文整理了多个Github代理网址,包括g.cachecdn.ggff.net、gitcode.com等,方便用户访问。同时提供了手动修改hosts文件的方法(适合临时使用),并推荐使用SwitchHosts工具自动更新Github IP。详细介绍了macOS/Linux和Windows系统的安装配置步骤,通过远程URL同步最新hosts,解决访问Github过慢的问题。文中附有操作截图,帮助用户快速完成设置。
2025-08-01 14:51:13
1061
原创 Linux安装AnythingLLM
官网首页直接提供的Desktop脚本安装,只能够个人使用,无法多人使用。方式进行安装可以满足多人同时使用。我这里的模型是 本地。
2025-07-31 14:14:33
459
2
原创 Linux安装ragflow(含一键安装脚本)
脚本会在docker中安装 redis 、 minio 、 es 、mysql 、ragflow ,如果服务器存在这些服务的记得处理下,为避免ragflow的端口冲突,我在脚本中设置了端口为8880开始检测,如果没占用采用8880进行web端访问端口。如果重复运行脚本就需要执行以下命令进行清理后再重启。将以下两个文件放到docker目录下。进入项目的docker目录下。设置模型,前文中安装了。总结:服务器需要安装。上传到服务器进行解压。
2025-07-29 14:42:58
552
2
原创 Linux(centos7)安装 docker + ollama+ deepseek-r1:7b + Open WebUI(内含一键安装脚本)
Ollama 是一个本地运行大型语言模型的简易框架,支持一键安装和部署。文章提供了 Linux环境下的 Docker 安装配置、Ollama 容器部署、Deepseek 模型下载以及 Open WebUI 可视化界面安装等功能,简化了本地大模型的运行流程。安装完成后,用户可通过指定端口访问 Ollama 服务和 Web 管理界面。
2025-07-24 17:12:30
888
1
原创 Linux磁盘扩容
目录下只有50G但是/home下有839G我打算将/home的839G分500G给目录df -Th两个目录的文件类型都是xfsXFS 文件系统不支持缩小操作,不能直接缩小 /home 的逻辑卷(LV),否则会损坏文件系统。基于此开始操作。
2025-07-23 11:52:36
906
原创 RAG理解
RAG(检索增强生成)技术的应用场景与实现原理。RAG通过将用户问题与向量数据库中的文档进行相似度匹配,再结合大模型生成答案,有效解决了模型幻觉和精度问题。相比微调方法,RAG成本更低,适合数据量较小的企业。文章详细介绍了RAG的工作流程:从文本向量化、向量数据库存储到相似度检索,并比较了Naive RAG的优缺点。最后指出当RAG精度不足时可结合知识图谱,并提供了入门Demo链接。RAG平衡了成本与效果,是当前大模型应用的重要技术方案。
2025-06-19 11:56:07
814
原创 elasticsearch证书过期进行更换
Elasticsearch SSL证书配置修复方案 摘要:本文提供了Elasticsearch单机版的SSL证书修复方案,包含YML配置文件模板和自动化脚本。配置文件中启用了xpack安全模块,设置了传输层和HTTP层的SSL证书路径(PKCS12格式密钥库和JKS格式信任库)。配套的bash脚本可实现证书体系自动化重建,主要功能包括:环境验证(OpenSSL版本和Java版本检测)、证书生成(CA证书、服务证书)、密钥库创建以及Elasticsearch配置更新。脚本采用模块化设计,包含状态提示和错误处理
2025-06-17 10:10:31
375
原创 RabbitMq安装
需求:将考试交卷算分功能使用队列处理,调研结果如下为什么选择RabbitMQ做交卷算分的功能呢,不用其他中间件呢?在考试交卷场景中,选择RabbitMQ1. 可靠性优先考试系统对数据完整性要求极高,交卷消息必须确保不丢失。RabbitMQ 通过以下机制提供强可靠性保障:生产者确认机制:支持同步 / 异步确认,确保消息成功发送到 Broker。持久化策略:队列和消息均支持持久化,即使 Broker 重启也不会丢失。手动 ACK 机制:消费者处理完成后才确认消息,失败时可重新入队。
2025-06-09 17:26:43
1146
原创 coze平台实现文生视频和图生视频(阿里云版)工作流
720P :视频分辨率通常指 1280×720(约 92万像素),视频宽高比为16:9。示例:若输入图像的宽高比例为 4:3,且视频分辨率档位为720P ,则输出视频的宽高比会保持4:3,分辨率会调整为接近 92万像素。例如,输出视频的分辨率为 1024×960,总像素 98.3万(此数据仅做参考,以实际输出为准)。轮询结束后获取视频链接,因为轮询会把每次的结果集都返回,(要么在轮询体中处理,要么就是返回后处理,这里是返回后处理的,拿的最后一条):首帧图的url,采用首帧图生视频或者首尾帧图生视频时使用。
2025-05-13 17:00:13
2121
6
原创 langchain +ollama +chroma+embedding模型实现RAG入门级Demo(python版)
RAGNaive RAG(朴素RAG)、(高级RAG)和(模块化RAG)RAG在成本效益上超过了原生LLM,但也表现出了几个局限性,这也更大家一个印象:入门容易,做好难。和的发展是为了解决Naive RAG中的缺陷。Naive RAG遵循一个传统的流程,包括索引、检索和生成,它也被称为“检索-阅读”框架,将查询(query)与文档的检索结合起来,通过大语言模型 (LLM) 生成答案。将数据先通过嵌入(embedding)算法转变为向量数据,然后存储在Chroma这种向量数据库。
2025-04-21 17:18:04
977
原创 RAGFlow安装+本地知识库+踩坑记录
RAGFlow是一种融合了数据检索与生成式模型的新型系统架构,其核心思想在于将大规模检索系统与先进的生成式模型(如Transformer、GPT系列)相结合,从而在回答查询时既能利用海量数据的知识库,又能生成符合上下文语义的自然语言回复。该系统主要包含两个关键模块:数据检索模块和生成模块。数据检索模块负责在海量数据中快速定位相关信息,而生成模块则基于检索结果生成高质量的回答或文本内容。
2025-04-21 12:00:55
2651
2
原创 ollama加载本地自定义模型
因为我们自己微调好的模型呢就是我们自定义的模型了,这个ollama官方不支持咱自己微调的模型,而且我们微调好的模型也不想泄露出去,所以我们就需要这个自定义模型首先要新建一个Modelfile文件,这个文件放哪里都行,最好跟ollama模型放一块我这里放到了下起名叫的内容注册模型成功注册成功后进行使用。
2025-04-10 14:50:59
1104
原创 coze生成流程图和思维导图工作流
根据类型设置放置不同的大模型,定义其角色为专精类型的角色,如生成流程图,这角色为流程图相关领域专家,提示词可以通过coze自己的自动优化提示词生成,也可以自行通过各种AI模型进行生成调整。这里原计划采用ProcessOn插件 生成 流程图 和 思维导图 方法。需求:通过coze平台实现生成流程图和思维导图,要求支持文档上传。原先提示词模型只定义了一个,现在将生成提示词的大模型分多为个。选择器分发,不同的类型走之后不同的流程 这里默认走思维导图。测试发现ProcessOn的思维导图方法报错。
2025-04-07 11:33:52
980
原创 coze 整合用户需求+文件内容的工作流
如果上传了附件需要调用解析文件的插件,该插件只支持域名链接的文件地址,不支持ip格式的地址。需求:整合用户需求+文件内容,要求支持上传文件附件。添加一个大模型用户整合用户需求以及文件的内容。选择器判断是否需要解析文件。
2025-04-07 11:29:25
648
原创 java 使用 spring AI 实战MCP
全称 Model Context Protocol 是一种专为人工智能模型设计的通信协议,于2024年11月由Anthropic推出的开放标准。它旨在解决复杂AI系统中多个模型或组件之间的协同、状态管理和资源优化问题,以及AI应用与外部数据源和工具集成中的挑战。MCP 是一个开放协议,用于标准化应用程序向大语言模型提供上下文的方式。
2025-04-02 22:45:00
4933
7
原创 LLaMA-Factory微调大模型
中断之后继续训练,可以使用下面命令,训练步数也会从保存的checkpoint处开始,比如checkpoint保。如果可以通过添加命令,从检查点开始继续训练,但训练集会从头开始训练,适合用新数据集继续训练。当然使用命令训练,没有用webui看loss那么直观,需要加一个命令。对话模版 选择 qwen 是我这里的模型选择的qwen系列的。存点是400步,但是在450步中断,会从400步开始继续。我们用longgeai的甄嬛数据集进行测试。点击预览数据集可以查看数据集的格式。文件,这个文件需要放到。
2025-03-20 17:34:09
1695
3
原创 coze制作生成文件工作流 + 工作流发送http请求
接下来想做的是让我们的项目使用这个工作流,怎么做呢,在工作流外再套一层,让工作流结束后将结果发送给我们的系统API。生成时间还挺长,点击查看日志,两个大模型的耗时较长一点,这里需要大家自己更换合适的大模型适配。增加一个解析用户需求的大模型(这个大模型用来润色用户的需求,以及将文档内容与需求组合起来)需求:根据用户要求生成相关的设计方案文件,文件要求word、pdf两种格式。参数不为空,说明有附件上传,需要解析附件内容,否则直接将用户。生成结合起来的人设,示例是由公司业务给出的。加入生成设计方案的大模型。
2025-03-20 17:31:12
3754
原创 coze创建联网版deepseek-R1
添加 deepseek_R1 大模型。input 输入选择用户输入信息。用来接收bing搜索内容。结束点击选择文本进行输出。添加提取搜索关键字模型。完事后点击试运行测试。
2025-03-19 11:09:56
369
原创 java调用百度千帆demo
点击右上角更新发布 或者 发布 ,发布成功后再API处可以查看官方的Demo。可以使用SpringAI进行调用也可以使用官方提供的方法,之前有。复制此处的应用ID 就是 APPID 留着调用时使用。在此处创建一个鉴权的API-KEY ,代码调用使用。改一改内容就可以用,这里就采用官方的方式进行调用。替换自己的 APPID 和 API-KEY。首先去百度千帆应用处创建一个应用。根据自己的业务配置应用的角色。
2025-03-04 16:23:08
489
原创 记录若依分离版脚手架升级 springboot 3.X版本 中的报错 以及集成mybatis plus
jaxb-api 的版本号更改为新版,springboot3.X要求jdk17以上,jaxb-api的版本要适配jdk所以要变更。解决方案:使用新版的mybatis ,在父pom文件 和 common 的pom 文件中添加相关依赖。版本过老的原因,需要更改,但是查找依赖发现他并没有mybatis依赖,他的依赖是从。spring-boot-maven-plugin 的版本也有点老,我们可以升级下。我这里的截图已经是处理之后的,所以看到mybatis 是灰色的。security版本旧,需要更改新版本的。
2025-03-04 11:00:53
1323
2
原创 SpringAI 调用本地ollama大模型
你们可以根据自己部署的模型更改代码中的配置进行访问。我这里ollama部署的是。运行项目 测试demo。
2025-03-03 11:30:51
547
2
原创 docker 运行 芋道微服务
docker-compose.yml 内容:我这里的是ai服务,所以将原先的文件内容做了变更,你们需要用到什么服务就在下面文件中进行更改即可。Docker 尝试拉取 eclipse-temurin:21-jre 镜像时遇到了网络相关的问题,使用国内镜像加速器。发现redis连接报错一直连接127.0.0.1, ,可是我的配置文件中名称指定了地址。看了一眼安装教程有点繁琐,先去掉,后续有时间再进行安装。每个服务配置下都有以下这三行,删除掉即可。删除完之后将nacos配置进行更改下。处理完成之后我们再次启动。
2025-02-14 18:04:40
1115
原创 office高效AI插件
也可以用收费的模型,只需要把API的KEY拿过来。API_KEY:从deepseek官网申请。还有其他的功能,大家可以探索探索。可以使用免费的大模型引擎。
2025-02-11 17:07:15
4930
原创 cuda + cudnn安装
在设备管理器(此电脑–右键–属性)的显示适配器中可以查看自己的显卡型号,去下载对应的CUDAToolkit。或者输入以下命令查看DriverVersion。安装完成后安装cudnn,如果是安装12.X版本的cuda需要对应9.X版本的cudnn。进入cuda的demo_suite目录。1.安装CUDAToolkit。下载后无脑安装就可以了。在此处进入cmd黑窗口。出现PASS代表成功。
2025-01-18 14:58:37
786
原创 comfyUI-阿里EchoMimicV2生成数字人
如果报错,是python版本和pip版本不兼容,将python版本从3.13.0降级到3.11.0后解决。如果电脑没装git,也可以手动进行下载放到custom_nodes目录下。进入custom_nodes目录下。在此处打开cmd黑窗口。
2025-01-17 18:09:48
1478
2
原创 ComfyUI安装
要使用python依赖来更新ComfyUI,只有在python依赖有问题时才需要运行此命令。:用于更新ComfyUI,如果官网有ComfyUI最新版本运行此脚本进行更新升级。:插件节点的安装目录,如果有需要的插件从github上下载下来解压到此目录即可。下载后解压,双击运行 run_cpu.bat。目录下,自己下载好模型后放到对应的文件夹下。文件夹下的命令时用来跟新ComfyUI相关的。ComfyUI的模型存放位置在。
2025-01-16 18:11:14
1026
20160325_1614199_IMOS_PlayerSDK_Win32_V2.01_796462_194214_0.zip
2019-07-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人