pytorch gpu国内镜像下载,目前最快下载

前言

        pytorch的cpu的包可以在国内镜像上下载,但是gpu版的包只能通过国外镜像下载,网上查了很多教程,基本都是手动从先将gpu版whl包下载下来,然后再手动安装,如何最快的通过pip的命令安装呢?下面我细细讲下。

解决办法

        注意:此方法只能支持torch<=2.3.1的版本,更高的gpu版本阿里云上没有,只能从pytorch官网下载。

       目前国内有pytorch的gpu版的whl包只有阿里云上的:https://mirrors.aliyun.com/pytorch-wheels/

这里以11.8为例:

官网中,通过pip命令安装的torch包命令如下:Previous PyTorch Versions | PyTorch

# CUDA 11.8
pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu118

然后,网上的各种教程,都是说,直接将https://download.pytorch.org/whl/cu118,改成https://mirrors.aliyun.com/pytorch-wheels/cu118,会直接报如下错误:

哈哈,看到这里,恭喜你被忽悠了。

正确的命令是这样的:

pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 -f https://mirrors.aliyun.com/pytorch-wheels/cu118

或者

pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.html

完美解决!!!

### PyTorch GPU 离线部署教程 #### 准备工作 为了成功完成 PyTorchGPU 版本离线部署,需先确认目标计算机具备支持 CUDA 的 NVIDIA 显卡以及相应的驱动程序已更新至最新版本[^1]。如果仅检测到 CPU 集成显卡(如 Intel HD Graphics),则无法安装 GPU 版本。 #### 下载必要的组件 在联网环境中准备以下文件: 1. **CUDA 工具包**:下载与目标系统兼容的 CUDA Toolkit 安装包。例如 `cuda_10.1.243_win10.exe` 或者其对应的 `.zip` 压缩包形式。 2. **cuDNN 库**:从 NVIDIA 官方网站获取适用于所选 CUDA 版本的 cuDNN 文件,并解压保存。 3. **PyTorch Wheel 文件**:访问官方 PyTorch 网站 (https://pytorch.org/) 并生成适合本地系统的 wheel 包链接。选择对应的操作系统、Python 版本、CUDA 版本组合后手动下载该 whl 文件用于后续安装。 #### 转移至无网络设备 通过 U 盘或其他介质将上述所有必需项传输到目标脱机主机上。 #### 执行安装过程 1. **设置环境变量** 修改系统 PATH 变量以包含 CUDA 和 cuDNN 的路径位置。具体目录可能类似于下面这些例子之一取决于实际使用的版本号[C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.\bin;C:\tools\cudnn\bin][^2]。 2. **验证硬件加速功能正常运作** 运行简单的 Python 测试脚本来检查当前可用设备是否被识别为 GPU 设备。 ```python import torch if torch.cuda.is_available(): print('CUDA is available.') device_count = torch.cuda.device_count() for i in range(device_count): print(f'Device {i}:', torch.cuda.get_device_name(i)) else: print('No CUDA devices found.') ``` 3. **利用 pip 完成最终装配** 利用先前转移过来的那个预编译好的 .whl 文件来执行最后一步的核心框架安裝命令如下所示: ```bash python -m pip install --no-index --find-links=<path_to_whls> torch torchvision torchaudio ``` 替换 `<path_to_whls>` 成实际存放那些轮子档案所在的绝对地址字符串。 #### 后续操作建议 确保所有的依赖关系都得到妥善处理之后再尝试加载模型或者训练数据集等更复杂的任务前再次测试整个流程一遍看看有没有遗漏的地方。
评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

番茄小能手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值