【全网唯一】按键精灵Windows版纯本地离线文字识别插件

 目的

        按键精灵是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。但按键精灵是不包含图色功能,无法识别屏幕上的图像,根据图像的变化自动执行相应的操作。本篇文章主要讲解下按键精灵TomatoOCR纯本地离线文字识别Windows版插件如何使用和集成。

        当然除了Windows版的,还有:

        安卓端的文字识别插件:按键精灵安卓版纯本地离线文字识别插件

        iOS端的文字识别插件:按键精灵iOS版纯本地离线文字识别插件

准备工作

1、下载按键精灵开发工具

        

2、下载TomatoOCR纯本地离线文字识别插件:下载插件

        

  • 目前插件支持中英文、繁体字、日语、韩语识别;
  • 支持小图、区域图和单行文字识别,准确率高达99%;
  • 支持多种返回格式,json\文本\数字\自定义;
  • 支持二值化;
  • 支持找字返回坐标并点击;
  • 超高的稳定性,速度快;
  • 支持多线程;

插件集成

1、下载插件后,将名字改成 TomatoOCRPlugin.dll 右键导入到插件命令中,如下图:

2、将下面的代码导入到助手中

//******************************************************************************
//******欢迎使用TomatoOCR文字识别插件,加入群【469843332】可获取最新版本!!******
//******************************************************************************

Event Form1.Button1.Click

    
    Plugin.TomatoOCRPlugin.init(2) // 初始化两个线程
    Plugin.TomatoOCRPlugin.setMode("dev") // 详见:https://www.52tomato.com/docs/index.html#/guide/code?id=setmode
    
    Dim license
    license = ""     // 设置license,见授权码获取
    Dim remark
    remark = "测试"   // 设置备注,可在控制台的列表中查看,这个必须加一个,不可能设置成“”
    flag = Plugin.TomatoOCRPlugin.setLicense(license,remark)
    traceprint(flag)
    // *******************************以上是初始化代码,只需要写一次*******************************

    Dim obj
    obj = Plugin.TomatoOCRPlugin.lock() // 获取句柄,与unlock一一对应,必写

    Plugin.TomatoOCRPlugin.setRecType obj, "ch-3.0"
    // 注:ch、ch-2.0、ch-3.0版可切换使用,对部分场景可适当调整
    // "ch":普通中英文识别,1.0版模型
    // "ch-2.0":普通中英文识别,2.0版模型
    // "ch-3.0":普通中英文识别,3.0版模型
    // "cht":繁体,"japan":日语,"korean":韩语
    Plugin.TomatoOCRPlugin.setDetBoxType obj, "rect"
    // 调整检测模型检测文本参数- 默认"rect": 由于手机上截图文本均为矩形文本,从该版本之后均改为rect,"quad":可准确检测倾斜文本
    Plugin.TomatoOCRPlugin.setDetUnclipRatio obj, 1.9
    // 调整检测模型检测文本参数 - 默认1.9: 值范围1.6-2.5之间
    Plugin.TomatoOCRPlugin.setRecScoreThreshold obj, 0.5
    // 识别得分过滤 - 默认0.1,值范围0.1-0.9之
    Plugin.TomatoOCRPlugin.setReturnType obj, "json"
    // 返回类型 - 默认"json": 包含得分、坐标和文字;
    // "text":纯文字;
    // "num":纯数字;
    // 自定义输入想要返回的文本:".¥1234567890",仅只返回这些内容
    Plugin.TomatoOCRPlugin.setBinaryThresh obj, 0
    // 二值化设定,非必须,默认为0
    Plugin.TomatoOCRPlugin.setRunMode obj, "slow" // 默认“slow”;“fast”:小图识别上会加速,但准确率会降低,推荐用默认值“slow”
    
    Dim recType
    recType = 3
    // type=-1 : 检测 + 方向分类 + 识别
    // type=0 : 只检测
    // type=1 : 方向分类 + 识别
    // type=2 : 只识别
    // type=3 : 检测 + 识别
    // 只检测文字位置:type=0
    // 全屏识别: type=3或者不传type
    // 截取单行文字识别:type=1或者type=2
    
    // 例子一
    result1 = Plugin.TomatoOCRPlugin.ocrFile(obj, "C:\\Users\\Administrator\\Downloads\\1.jpg", recType)
    traceprint(result1)

    // 例子二,自定义截图区域,相对于电脑屏幕
    result2 = Plugin.TomatoOCRPlugin.ocrScreen(obj, 0,0,500,500, recType,"C:\\")
    traceprint(result2)
    
    // 找字返回中心点,找不到返回“”空字符串
    center_point = Plugin.TomatoOCRPlugin.findTapPoint(obj, "气")
    traceprint(center_point)
    
    // 找字返回中心点,找出所有相匹配的字,找不到返回“”空字符串
    center_points = Plugin.TomatoOCRPlugin.findTapPoints(obj, "气")
    traceprint(center_points)

    Plugin.TomatoOCRPlugin.unlock(obj)   // 释放句柄

End Event

3、运行

以上就是所有的运行情况。

完毕

        相对来说,在按键精灵Windows进行插件开发还是比较困难的,官方提供的功能太少,原生插件集成无法采用直连的方式,但相比部署在服务器上,还是减少了很多资源占用情况,更加方便便捷。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

番茄小能手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值