MySQL索引
概述
一种帮助MySQL提高查询效率的数据结构
- 优点:大大加快数据查询速度
- 缺点:1、维护索引需要耗费数据库资源 2、索引需要占用磁盘空间 3、当对表的数据进行增删改时,速度会收到影响
索引数据建构
- 二叉树
- 红黑树
- Hash表
- B-Tree
索引分类
- 主键索引
- 设定为主键后数据库会自动建立索引,innodb为聚簇索引
- 普通索引
- 即一个索引只包含单列,一个表可以有多个单列索引
- 唯一索引
- 索引列的值必须唯一,但允许有空值
- 复合索引
- 即一个索引包含多个列
- Full Text 全文索引(5.7之前,只可以用于MYISAM引擎)
- 全文素朴类型为FULLTEXT,在定义索引的列上支持值的全文查找,允许在这些索引中插入重复值和空值,全文索引可以在CHAR、VARCHAR、TEXT类型列上创建
实际操作
# 对表中索引进行查询
show index from user;
# 这建表的时候设置主键,自动建立主键索引
create table user(id varchar(20) primary key,name varchar(20));
# 普通索引 创建表之后创建 create index 索引名称 on 表名(列名)
create index name_index on user(name)
# 普通索引 创建表时 除了主键id外设置name为普通索引
create table user(id varchar(20) primary key,name varchar(20),key(name));
# 唯一索引 创建表时创建
create table user(id varchar(20) primary key,name varchar(20),unique(name));
# 唯一索引 创建表之后
create unique index name_index on user(name);
#复合索引 建表时
create table user(id varchar(20) primary key,name varchar(20),age int(10),key(name,age));
#复合索引 创建表之后
create index name_age_index on user(name,age)
复合索引有两个原则
- 最左前缀原则
- MySQL引擎在查询时为了更好的利用索引,查询过程中会动态调整查询字段顺序以便利用索引
所以在使用复合索引时,若查询字段全部包括在索引中,且查询字段有索引的第一位,即可使用索引
Hash
- 对索引的key进行一次hash计算就可以定位出数据存储的位置
- 很多时候Hash索引都要比B+数索引更加高效
- 仅能满足“=”。“IN”,不支持范围查询
- hash冲突问题
B Tree
- 叶节点具有相同的深度,叶节点的指针为空
- 所有索引元素不重复
- 节点中的数据索引从左到右递增排列
B+Tree
- 非叶子节点不存储data,只存储索引,可以放更多的索引
- 叶子节点包含所有索引字段
- 叶子节点用指针连接,提高区间访问的性能
聚簇索引与非聚簇索引
- 聚簇索引:将数据存储与索引放到了一起,索引结构的叶子节点保存了行数据
- 非聚簇索引:将数据与索引分开存储,索引结构的叶子节点指向了数据对应的位置
在innodb中,在聚簇索引之上创建的索引称为辅助索引,非聚簇索引都是辅助索引,像复合索引、唯一索引。辅助索引叶子节点存储的不再是行的物理位置,而是主键值,辅助索引访问数据总是需要二次查找
聚簇索引的优势
- 由于行数据和聚簇索引的叶子节点存储在一起,同一页中会有多行数据,访问同一页不同行记录时,已经把叶加载到Buffer中,再次访问时会在内存中完成访问
- 辅助索引的叶子节点,存储主键值,而不是数据存放的地址。好处是当行数据发生变化时,索引树的叶子节点也需要分裂变化或者再需要进行io操作时,可避免对辅助索引的维护
MyLSAM存储引擎(非聚集 索引文件和数据文件是分离的)
通过MYI文件,快速查找索引,然后找到地址,通过MYD文件的地址查找到数据
InnoDB索引实现
- 表数据文件本身就是按B+Tree组织的一个索引结构文件
- 聚集索引-叶节点包含了完整的数据记录
将数据和主键存储到同一个文件中
非主键索引
非主键索引叶子节点中有主键值
在InnoDB中推荐自建整形自增主键,因为若无主键,mysql则会自己寻找没有重复的列
B Tree 与 B+Tree的区别
- B Tree叶子节点之间没有针,就不能更好的支持范围查找
- B+Tree将所有的data都放在叶子节点中,非叶子节点有冗余的数据,但是相比于B Tree在相同的大小,B+Tree可以存放更多的索引 k