CUDA编程模型介绍
1.介绍
CUDA是一种通用的并行计算平台和编程模型,在C语言基础扩展,借助于cuda可以像编写C语言一样的实现并行算法,本文主要介绍基础的编程概念和程序入门的第一个cuda程序。
2.CUDA编程模型概述
2.1 CUDA编程结构
cuda编程模型使用C语言扩展成的代码在异构计算系统中执行应用程序,一个异构环境中包含多个CPU和GPU,下面介绍两个常用的专用概念词
- 主机:CPU及其内存
- 设备:GPU及其内存
- 设备(kernel)-指代码在GPU上运行的代码
如下图所示
一般一个典型的CUDA程序实现的流程如下
- 数据从CPU内存拷贝到GPU内存
- 调用核函数(kernel)对存储在GPU内存中的数据进行操作
- 将数据从GPU内存送回到CPU内存
参考官网流程示意图如下
2.2 内存管理
CUDA模型假设系统由一个主机和设备组成的,各自拥有独立的内存。下面介绍一些函数针对GPU内存是的申请,释放和CPU之间传输的接口函数。
标准的C函数 | CUDA C函数 | 标准的C函数 | CUDA C函数 |
---|---|---|---|
malloc | cudaMalloc | memset | cudaMemset |
memcpy | cudaMemcpy | free | cudaFree |
重点函数 cudaMemcpy
函数原型如下
cudaError_t cudaMemcpy(void* dst, const void* src, size_t count, cudaMemcpyKind kind);
cudaMemcpyKind 有如下类型:
- cudaMemcpyHostToHost:从主机内存复制到主机内存(通常用于不同主机内存区域之间的复制,但在CUDA中较少使用,因为更多时候是与设备内存交互)
- cudaMemcpyHostToDevice:从主机内存复制到设备内存(即GPU内存)
- cudaMemcpyDeviceToHost:从设备内存复制到主机内存
- cudaMemcpyDeviceToDevice:从设备内存复制到另一个设备内存(在同一GPU或不同GPU之间复制数据,需要相应的硬件和驱动支持)
函数 cudaGetErrorString
原型如下
const char* cudaGetErrorString(cudaError_t error); //类似C语言中的strerror函数
2.3 线程管理
当核函数在主机端启动,会执行移动到设备上,设备上会产生大量的线程。CUDA明确线程层次抽象的概念,两层的线程层次结构由线程块和线程块网格构成。如下图:
CUDA组织三维的网格和块。使用dim3类型变量,基于uint3定义的整数型向量,用来表示维度。
blockIdx
:块索引threadIdx
:线程索引gridDim
:网格维度
下面是一个打印网格和块索引的与维度的例子:
#include "../common/common.h"
#include <cuda_runtime.h>
#include <stdio.h>
/*
* Display the dimensionality of a thread block and grid from the host and
* device.
*/
__global__ void checkIndex(void)
{
printf("threadIdx:(%d, %d, %d) blockIdx:(%d, %d, %d) blockDim:(%d, %d, %d) gridDim:(%d, %d, %d) \n", \
threadIdx.x, threadIdx.y, threadIdx.z, \
blockIdx.x, blockIdx.y, blockIdx.z, \
blockDim.x, blockDim.y, blockDim.z, \
gridDim.x, gridDim.y, gridDim.z);
}
int main(int argc, char **argv)
{
// define total data element
int nElem = 6;
// define grid and block structure
dim3 block(3);
dim3 grid((nElem + block.x - 1) / block.x);
// check grid and block dimension from host side
printf("grid.x %d grid.y %d grid.z %d\n", grid.x, grid.y, grid.z);
printf("block.x %d block.y %d block.z %d\n", block.x, block.y, block.z);
// check grid and block dimension from device side
checkIndex<<<grid, block>>>();
// reset device before you leave
CHECK(cudaDeviceReset());
return(0);
}
打印如下,更加形象说明上图的含义
grid.x 2 grid.y 1 grid.z 1
block.x 3 block.y 1 block.z 1
threadIdx:(0, 0, 0) blockIdx:(0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1)
threadIdx:(1, 0, 0) blockIdx:(0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1)
threadIdx:(2, 0, 0) blockIdx:(0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1)
threadIdx:(0, 0, 0) blockIdx:(1, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1)
threadIdx:(1, 0, 0) blockIdx:(1, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1)
threadIdx:(2, 0, 0) blockIdx:(1, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1)
对于一个给定的数据,确定网格和块尺寸的一般步骤为:
- 确定块的大小
- 在已知数据的大小和块大小的基础上计算网格维度
要确定块的尺寸,通常需要考虑如下两点:
- 内核的性能特性
- GPU资源的限制
在后续博客对以上几个因素进行详细的介绍。
2.4 启动一个CUDA核函数
应该对C语言函数的调用语句很熟悉:function_name (argument list);
下面说下CUDA内核调用函数格式,是对C语言函数调用的延伸:kernel_name <<<grid, block>>>(argument list);
如下图所示:
核函数调用与主机线程是异步的。核函数调用结束后,控制权立刻返回给主机端,可以用强制主机端程序等待所有核函数执行结束:cudaError_t cudaDeviceSynchronize(void);
或者使用隐式同步,当使用cudaMemcpy
函数在主机和设备之间拷贝数据时,主机隐式同步,即主机端必须等待数据拷贝完成后才能继续执行程序。
2.5 编写核函数
核函数是在设备端执行的代码。核函数调用时,书多不同的CUDA线程并行执行同一个计算任务。如下声明定义核函数:__global__ void kernel_name(argument list)
下表总结CUDA程序中的函数类型限定符。
限定符 | 执行 | 调用 | 备注 |
---|---|---|---|
__global__ | 在设备端执行 | 可从主机端调用 | 必须有一个void返回类型 |
__device__ | 在设备段执行 | 仅能从设备端调用 | |
__host__ | 在主机端执行 | 仅能从主机端调用 | 可以忽略 |
CUDA核函数的限制:
- 只能访问设备内存
- 必须具有void返回类型
- 不支持可变数量的参数
- 不支持静态变量
- 显示异步行为
下面举一个C语言和cuda语言,将两个大小为N的向量 A 和 B 相加,主机端C代码如下:
void vectorAdd(const float *A, const float *B, float *C, int N) {
for (int i = 0; i < N; i++) {
C[i] = A[i] + B[i];
}
}
cuda核函数:
__global__ void vectorAddKernel(const float *A, const float *B, float *C, int N) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {
C[i] = A[i] + B[i];
}
}
从上面两端代码可以判断内置的线程坐标编程替换了数组索引
2.6 编译和执行
现在举例一个完整基于GPU的向量加法例子
#include "../common/common.h"
#include <cuda_runtime.h>
#include <stdio.h>
void checkResult(float *hostRef, float *gpuRef, const int N)
{
double epsilon = 1.0E-8;
bool match = 1;
for (int i = 0; i < N; i++)
{
if (abs(hostRef[i] - gpuRef[i]) > epsilon)
{
match = 0;
printf("Arrays do not match!\n");
printf("host %5.2f gpu %5.2f at current %d\n", hostRef[i],
gpuRef[i], i);
break;
}
}
if (match) printf("Arrays match.\n\n");
return;
}
void initialData(float *ip, int size)
{
// generate different seed for random number
time_t t;
srand((unsigned) time(&t));
for (int i = 0; i < size; i++)
{
ip[i] = (float)(rand() & 0xFF) / 10.0f;
}
return;
}
void sumArraysOnHost(float *A, float *B, float *C, const int N)
{
for (int idx = 0; idx < N; idx++)
C[idx] = A[idx] + B[idx];
}
__global__ void sumArraysOnGPU(float *A, float *B, float *C, const int N)
{
int i = threadIdx.x;
if (i < N) C[i] = A[i] + B[i];
}
int main(int argc, char **argv)
{
printf("%s Starting...\n", argv[0]);
// set up device
int dev = 0;
CHECK(cudaSetDevice(dev));
// set up data size of vectors
int nElem = 1 << 5;
printf("Vector size %d\n", nElem);
// malloc host memory
size_t nBytes = nElem * sizeof(float);
float *h_A, *h_B, *hostRef, *gpuRef;
h_A = (float *)malloc(nBytes);
h_B = (float *)malloc(nBytes);
hostRef = (float *)malloc(nBytes);
gpuRef = (float *)malloc(nBytes);
// initialize data at host side
initialData(h_A, nElem);
initialData(h_B, nElem);
memset(hostRef, 0, nBytes);
memset(gpuRef, 0, nBytes);
// malloc device global memory
float *d_A, *d_B, *d_C;
CHECK(cudaMalloc((float**)&d_A, nBytes));
CHECK(cudaMalloc((float**)&d_B, nBytes));
CHECK(cudaMalloc((float**)&d_C, nBytes));
// transfer data from host to device
CHECK(cudaMemcpy(d_A, h_A, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_B, h_B, nBytes, cudaMemcpyHostToDevice));
CHECK(cudaMemcpy(d_C, gpuRef, nBytes, cudaMemcpyHostToDevice));
// invoke kernel at host side
dim3 block (nElem);
dim3 grid (1);
sumArraysOnGPU<<<grid, block>>>(d_A, d_B, d_C, nElem);
printf("Execution configure <<<%d, %d>>>\n", grid.x, block.x);
// copy kernel result back to host side
CHECK(cudaMemcpy(gpuRef, d_C, nBytes, cudaMemcpyDeviceToHost));
// add vector at host side for result checks
sumArraysOnHost(h_A, h_B, hostRef, nElem);
// check device results
checkResult(hostRef, gpuRef, nElem);
// free device global memory
CHECK(cudaFree(d_A));
CHECK(cudaFree(d_B));
CHECK(cudaFree(d_C));
// free host memory
free(h_A);
free(h_B);
free(hostRef);
free(gpuRef);
CHECK(cudaDeviceReset());
return(0);
Makefile文件
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
TARGET_ARCH ?= x86_64
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= x86_64
TARGET_SIZE := 64
TARGET_OS ?= linux
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I./common
LIBRARIES :=
################################################################################