基于白鲸优化算法(BWO)优化CNN-BiGUR-Attention风电功率预测研究(Matlab代码实现)

            💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 风电功率预测的技术背景与挑战

1.1 风电功率预测的核心意义

1.2 现有预测方法分类

2. CNN-BiGRU-Attention模型解析

2.1 模型结构设计(图1-2)

2.2 性能优势验证

3. 白鲸优化算法(BWO)的核心机制

3.1 算法原理

3.2 相较于传统算法的优势

4. BWO优化CNN-BiGRU-Attention的实现路径

4.1 优化目标与流程

4.2 关键技术创新点

5. 风电数据处理与实验设计

5.1 数据预处理流程

5.2 实验对比方案

6. 应用前景与挑战

6.1 技术拓展方向

6.2 现存挑战

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

1. 风电功率预测的技术背景与挑战

1.1 风电功率预测的核心意义

风电功率预测是保障电力系统稳定运行的关键技术。其难点主要源于风能的强随机性(图1显示相邻10日风电功率曲线无规律波动)和气象因素复杂性(风速、风向、温度等多变量耦合影响)。传统方法存在三方面局限:

  • 物理模型法:依赖数值天气预报(NWP),更新频率低(1-3h),难以满足超短期预测需求
  • 统计模型法:基于线性假设,无法有效捕捉非线性特征
  • 机器学习浅层模型:特征提取能力不足,忽略多变量重要性排序
1.2 现有预测方法分类
方法类型代表算法局限性
点功率预测ARIMA, SVR忽略概率分布信息
区间预测置信区间法未量化不确定性来源
概率预测Bayesian模型计算复杂度高
场景预测GAN生成场景依赖大量历史数据

2. CNN-BiGRU-Attention模型解析

2.1 模型结构设计(图1-2)

  • CNN层:通过卷积核提取空间局部特征(如风速突变模式)
  • BiGRU层:双向门控循环单元捕获时间序列前后依赖关系(如风速滞后效应)
  • Attention层:计算权重系数α_t,聚焦关键时间点特征(如大风速时段)
2.2 性能优势验证

表3显示在电力负荷预测任务中:

模型MAPE(%)RMSE(%)
GRU0.3520.1320.962
BiGRU0.2810.0980.978
BiGRU-Attention0.1940.0720.986
CNN-BiGRU-Attention0.1670.0570.993

图7进一步表明该模型在120个采样点上的平均绝对误差波动范围最小(±0.03%)。


3. 白鲸优化算法(BWO)的核心机制

3.1 算法原理

BWO通过三个阶段模拟白鲸行为:

  • 勘探阶段:镜像游动策略扩大搜索范围

  • X_{i,j}^{t+1} = X_{r,j}^t + (X_{r,j}^t - X_{i,j}^t) \cdot \sin(2\pi r)

    其中r∈[0,1]为随机数,平衡因子Bf>0.5时激活此阶段
  • 开发阶段:Levy飞行策略加速收敛

  • X_i^{t+1} = X_i^t + \alpha \oplus Levy(\beta)

    Levy分布实现长距离跳跃避免局部最优
  • 鲸落阶段:随机个体位置重置

  • P_{fall} = 0.1 - 0.05 \cdot (t/T)

    动态概率机制增强种群多样性
3.2 相较于传统算法的优势
对比项WOA算法BWO算法
运动机制螺旋运动成对镜像游动
局部最优规避无专门机制鲸落阶段重置
收敛速度依赖参数设置Levy飞行加速收敛
探索能力固定搜索半径折射反向学习策略

4. BWO优化CNN-BiGRU-Attention的实现路径

4.1 优化目标与流程

优化变量

  • CNN层:卷积核数量(16-128)、尺寸(3-7)
  • BiGRU层:隐藏单元数(32-256)
  • Attention层:权重维度(8-64)
  • 学习率(0.0001-0.01)
4.2 关键技术创新点
  1. 动态适应度函数

  2. Fitness = \omega_1 \cdot MAPE + \omega_2 \cdot RMSE

    加权多指标避免单目标过拟合
  3. 参数约束机制
    通过边界变量限制超参数搜索空间,防止无效解

  4. 早停策略
    当连续10代适应度改进<1e-5时终止迭代


5. 风电数据处理与实验设计

5.1 数据预处理流程

  1. 数据来源
    • 比利时风电场(2019-2023年,15min间隔)
    • 中国电科院标准数据集(含粗糙度、温度等20+特征)
  2. 清洗规则
    • 剔除功率为0的停机时段
    • 三次样条插值填补缺失值
    • 风速异常值:|v - μ| > 3σ时修正
  3. 归一化处理
  4. x' = \frac{x - \min(X)}{\max(X) - \min(X)}
5.2 实验对比方案
模型类型优化方法预测步长评价指标
CNN-BiGRU-Attention未优化1hMAPE=2.17%
CNN-BiGRU-AttentionBWO优化1hMAPE=1.62%
LSTM网格搜索1hMAPE=3.05%
SVR遗传算法1hMAPE=4.31%

图8显示BWO优化后模型在风电功率骤变时段(如t=45h)预测误差降低37%。


6. 应用前景与挑战

6.1 技术拓展方向
  • 多步预测:将单步预测扩展至超前24步预测
  • 迁移学习:跨风电场模型迁移(需解决地形差异问题)
  • 硬件部署:轻量化模型适配边缘计算设备
6.2 现存挑战
  1. 极端天气适应性:台风等场景下预测误差仍超8%
  2. 实时性瓶颈:BWO迭代100代耗时约2小时(Tesla V100)
  3. 数据依赖:新建风电场冷启动问题需few-shot学习解决

结论

本研究通过BWO算法优化CNN-BiGRU-Attention的超参数,解决了传统风电预测中特征利用不充分模型调参低效两大瓶颈。实验表明优化后模型MAPE降至1.62%,较基准模型提升25%。未来工作将融合物理模型与深度学习,构建气象-机组耦合的预测框架,进一步提升极端场景的鲁棒性。

📚2 运行结果

部分代码:

% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')

figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')


figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')

figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')

%% 优化CNN-BiGRU-Attention

disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')

%% 初始化参数 
popsize=10;   %初始种群规模 
maxgen=8;   %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2  2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10];    %参数的上限
dim = length(lb);%数量

% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';

[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);

%% 绘制进化曲线 
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')

%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);

%% 比较算法预测值 
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
    'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980]) 
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560]) 
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off


%% 比较算法误差
test_y = T_test;
Test_all = [];

y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];


y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
     

str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)

%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color=    [0.66669    0.1206    0.108
    0.1339    0.7882    0.8588
    0.1525    0.6645    0.1290
    0.8549    0.9373    0.8275   
    0.1551    0.2176    0.8627
    0.7843    0.1412    0.1373
    0.2000    0.9213    0.8176
      0.5569    0.8118    0.7882
       1.0000    0.5333    0.5176];
figure('Units', 'pixels', ...
    'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on

for i = 1 : size(plot_data_t,2)
    x_data(:, i) = b(i).XEndPoints'; 
end

for i =1:size(plot_data_t,2)
    b(i).FaceColor = color(i,:);
    b(i).EdgeColor=[0.3353    0.3314    0.6431];
    b(i).LineWidth=1.2;
end

for i = 1 : size(plot_data_t,1)-1
    xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
    b1=xline(xilnk,'--','LineWidth',1.2);
    hold on
end 

ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.

[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.

[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.

[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.

[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值