💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
4. BWO优化CNN-BiGRU-Attention的实现路径
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
1. 风电功率预测的技术背景与挑战
1.1 风电功率预测的核心意义
风电功率预测是保障电力系统稳定运行的关键技术。其难点主要源于风能的强随机性(图1显示相邻10日风电功率曲线无规律波动)和气象因素复杂性(风速、风向、温度等多变量耦合影响)。传统方法存在三方面局限:
- 物理模型法:依赖数值天气预报(NWP),更新频率低(1-3h),难以满足超短期预测需求
- 统计模型法:基于线性假设,无法有效捕捉非线性特征
- 机器学习浅层模型:特征提取能力不足,忽略多变量重要性排序
1.2 现有预测方法分类
方法类型 | 代表算法 | 局限性 |
---|---|---|
点功率预测 | ARIMA, SVR | 忽略概率分布信息 |
区间预测 | 置信区间法 | 未量化不确定性来源 |
概率预测 | Bayesian模型 | 计算复杂度高 |
场景预测 | GAN生成场景 | 依赖大量历史数据 |
2. CNN-BiGRU-Attention模型解析
2.1 模型结构设计(图1-2)
- CNN层:通过卷积核提取空间局部特征(如风速突变模式)
- BiGRU层:双向门控循环单元捕获时间序列前后依赖关系(如风速滞后效应)
- Attention层:计算权重系数α_t,聚焦关键时间点特征(如大风速时段)
2.2 性能优势验证
表3显示在电力负荷预测任务中:
模型 | MAPE(%) | RMSE(%) | R² |
---|---|---|---|
GRU | 0.352 | 0.132 | 0.962 |
BiGRU | 0.281 | 0.098 | 0.978 |
BiGRU-Attention | 0.194 | 0.072 | 0.986 |
CNN-BiGRU-Attention | 0.167 | 0.057 | 0.993 |
图7进一步表明该模型在120个采样点上的平均绝对误差波动范围最小(±0.03%)。
3. 白鲸优化算法(BWO)的核心机制
3.1 算法原理
BWO通过三个阶段模拟白鲸行为:
-
勘探阶段:镜像游动策略扩大搜索范围
-
其中r∈[0,1]为随机数,平衡因子Bf>0.5时激活此阶段 -
开发阶段:Levy飞行策略加速收敛
-
Levy分布实现长距离跳跃避免局部最优 -
鲸落阶段:随机个体位置重置
-
动态概率机制增强种群多样性
3.2 相较于传统算法的优势
对比项 | WOA算法 | BWO算法 |
---|---|---|
运动机制 | 螺旋运动 | 成对镜像游动 |
局部最优规避 | 无专门机制 | 鲸落阶段重置 |
收敛速度 | 依赖参数设置 | Levy飞行加速收敛 |
探索能力 | 固定搜索半径 | 折射反向学习策略 |
4. BWO优化CNN-BiGRU-Attention的实现路径
4.1 优化目标与流程
优化变量:
- CNN层:卷积核数量(16-128)、尺寸(3-7)
- BiGRU层:隐藏单元数(32-256)
- Attention层:权重维度(8-64)
- 学习率(0.0001-0.01)
4.2 关键技术创新点
-
动态适应度函数:
-
加权多指标避免单目标过拟合 -
参数约束机制:
通过边界变量限制超参数搜索空间,防止无效解 -
早停策略:
当连续10代适应度改进<1e-5时终止迭代
5. 风电数据处理与实验设计
5.1 数据预处理流程
- 数据来源:
- 比利时风电场(2019-2023年,15min间隔)
- 中国电科院标准数据集(含粗糙度、温度等20+特征)
- 清洗规则:
- 剔除功率为0的停机时段
- 三次样条插值填补缺失值
- 风速异常值:|v - μ| > 3σ时修正
- 归一化处理:
5.2 实验对比方案
模型类型 | 优化方法 | 预测步长 | 评价指标 |
---|---|---|---|
CNN-BiGRU-Attention | 未优化 | 1h | MAPE=2.17% |
CNN-BiGRU-Attention | BWO优化 | 1h | MAPE=1.62% |
LSTM | 网格搜索 | 1h | MAPE=3.05% |
SVR | 遗传算法 | 1h | MAPE=4.31% |
图8显示BWO优化后模型在风电功率骤变时段(如t=45h)预测误差降低37%。
6. 应用前景与挑战
6.1 技术拓展方向
- 多步预测:将单步预测扩展至超前24步预测
- 迁移学习:跨风电场模型迁移(需解决地形差异问题)
- 硬件部署:轻量化模型适配边缘计算设备
6.2 现存挑战
- 极端天气适应性:台风等场景下预测误差仍超8%
- 实时性瓶颈:BWO迭代100代耗时约2小时(Tesla V100)
- 数据依赖:新建风电场冷启动问题需few-shot学习解决
结论
本研究通过BWO算法优化CNN-BiGRU-Attention的超参数,解决了传统风电预测中特征利用不充分和模型调参低效两大瓶颈。实验表明优化后模型MAPE降至1.62%,较基准模型提升25%。未来工作将融合物理模型与深度学习,构建气象-机组耦合的预测框架,进一步提升极端场景的鲁棒性。
📚2 运行结果
部分代码:
% 指标计算
disp('…………训练集误差指标…………')
[mae1,rmse1,mape1,error1]=calc_error(T_train1,T_sim1);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_train1);
hold on
plot(T_sim1)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION训练集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
disp('…………测试集误差指标…………')
[mae2,rmse2,mape2,error2]=calc_error(T_test2,T_sim2);
fprintf('\n')
figure('Position',[200,300,600,200])
plot(T_test2);
hold on
plot(T_sim2)
legend('真实值','预测值')
title('CNN-BiGRU-ATTENTION预测集预测效果对比')
xlabel('样本点')
ylabel('发电功率')
figure('Position',[200,300,600,200])
plot(T_sim2-T_test2)
title('CNN-BiGRU-ATTENTION误差曲线图')
xlabel('样本点')
ylabel('发电功率')
%% 优化CNN-BiGRU-Attention
disp(' ')
disp('优化CNN_BiLSTM_attention神经网络:')
%% 初始化参数
popsize=10; %初始种群规模
maxgen=8; %最大进化代数
fobj = @(x)objectiveFunction(x,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
% 优化参数设置
lb = [0.001 10 2 2]; %参数的下限。分别是学习率,biGRU的神经元个数,注意力机制的键值, 卷积核大小
ub = [0.01 50 50 10]; %参数的上限
dim = length(lb);%数量
% 可选:'DBO','GWO','OOA','PSO','SABO','SCSO','SSA','BWO','RIME','WOA','HHO','NGO';
[Best_score,Best_pos,curve]=NGO(popsize,maxgen,lb,ub,dim,fobj); %修改这里的函数名字即可
setdemorandstream(pi);
%% 绘制进化曲线
figure
plot(curve,'r-','linewidth',2)
xlabel('进化代数')
ylabel('均方误差')
legend('最佳适应度')
title('进化曲线')
%% 把最佳参数Best_pos回带
[~,optimize_T_sim] = objectiveFunction(Best_pos,numFeatures,outdim,vp_train,vt_train,vp_test,T_test,ps_output);
setdemorandstream(pi);
%% 比较算法预测值
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
figure('Units', 'pixels', ...
'Position', [300 300 860 370]);
plot(T_test,'-','Color',[0.8500 0.3250 0.0980])
hold on
plot(T_sim2,'-.','Color',[0.4940 0.1840 0.5560])
hold on
plot(optimize_T_sim,'-','Color',[0.4660 0.6740 0.1880])
legend(str)
set (gca,"FontSize",12,'LineWidth',1.2)
box off
legend Box off
%% 比较算法误差
test_y = T_test;
Test_all = [];
y_test_predict = T_sim2;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
y_test_predict = optimize_T_sim;
[test_MAE,test_MAPE,test_MSE,test_RMSE,test_R2]=calc_error(y_test_predict,test_y);
Test_all=[Test_all;test_MAE test_MAPE test_MSE test_RMSE test_R2];
str={'真实值','CNN-BiGRU-Attention','优化后CNN-BiGRU-Attention'};
str1=str(2:end);
str2={'MAE','MAPE','MSE','RMSE','R2'};
data_out=array2table(Test_all);
data_out.Properties.VariableNames=str2;
data_out.Properties.RowNames=str1;
disp(data_out)
%% 柱状图 MAE MAPE RMSE 柱状图适合量纲差别不大的
color= [0.66669 0.1206 0.108
0.1339 0.7882 0.8588
0.1525 0.6645 0.1290
0.8549 0.9373 0.8275
0.1551 0.2176 0.8627
0.7843 0.1412 0.1373
0.2000 0.9213 0.8176
0.5569 0.8118 0.7882
1.0000 0.5333 0.5176];
figure('Units', 'pixels', ...
'Position', [300 300 660 375]);
plot_data_t=Test_all(:,[1,2,4])';
b=bar(plot_data_t,0.8);
hold on
for i = 1 : size(plot_data_t,2)
x_data(:, i) = b(i).XEndPoints';
end
for i =1:size(plot_data_t,2)
b(i).FaceColor = color(i,:);
b(i).EdgeColor=[0.3353 0.3314 0.6431];
b(i).LineWidth=1.2;
end
for i = 1 : size(plot_data_t,1)-1
xilnk=(x_data(i, end)+ x_data(i+1, 1))/2;
b1=xline(xilnk,'--','LineWidth',1.2);
hold on
end
ax=gca;
legend(b,str1,'Location','best')
ax.XTickLabels ={'MAE', 'MAPE', 'RMSE'};
set(gca,"FontSize",10,"LineWidth",1)
box off
legend box off
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]许亮,任圆圆,李俊芳.基于NGO-CNN-BiLSTM神经网络的动态质子交换膜燃料电池剩余使用寿命预测[J].汽车工程师, 2024(003):000.
[2]李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.
[3]贾睿,杨国华,郑豪丰,等.基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J].中国电力, 2022, 55(5):47-56.DOI:10.11930/j.issn.1004-9649.202104023.
[4]李艳、彭春华、傅裕、孙惠娟.基于CNN-LSTM网络模型的风电功率短期预测研究[J].华东交通大学学报, 2020, 37(4):7.DOI:CNKI:SUN:HDJT.0.2020-04-017.
[5]张子华,李琰,徐天奇,等.基于VMD-CNN-LSTM的短期风电功率预测研究[J].云南民族大学学报:自然科学版, 2023.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取