💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于瞬态三角哈里斯鹰算法(TTHHO)的多无人机协同集群避障路径规划研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于瞬态三角哈里斯鹰算法(TTHHO)的多无人机协同集群避障路径规划研究
一、TTHHO算法的核心原理与创新机制
TTHHO算法是哈里斯鹰优化算法(HHO)的改进版本,通过引入瞬态三角机制解决传统HHO易陷入局部最优的问题,并增强全局搜索与局部开发的平衡能力。其核心原理包括:
-
瞬态搜索策略
利用动态三角拓扑结构调整种群位置,避免早熟收敛。具体实现为:每只无人机根据当前最优解和邻居信息计算瞬态三角顶点(三个候选方向),选择适应度更高的方向移动。位置更新公式为:其中 X1,X2,X3 为三角顶点,α,β为动态权重系数 。
-
自适应能量方程
猎物能量 EE 随迭代非线性衰减,控制探索与开发的转换:- 当 ∣E∣≥1∣ 时,算法处于全局探索阶段,采用莱维飞行(Levy Flight)扩大搜索范围;
- 当 ∣E∣<1 时,切换至局部开发阶段,模拟哈里斯鹰的围攻行为(软围攻、硬围攻等)。
-
分层协同结构
采用三层架构(图2):- 顶层:HHO生成的 MM 个搜索代理;
- 中层:MM 组SCA种群,每组含 NN 个个体;
- 底层:OO 个TSO种群。
各层间通过最佳解传递实现协同优化,显著提升解的质量和收敛速度 。
二、多无人机协同避障的核心技术难点与解决方案
难点1:高维解空间与动态环境适应性
- 问题本质:nn 架无人机在 kk 节点路径下的解空间达 knkn 级,需同时规避静态障碍物(建筑、山体)和动态威胁(其他无人机、防空区域)。
- 解决方案:
- 滚动时域优化(Rolling Horizon) :将全局问题分解为局部路径迭代优化,降低计算复杂度 ;
- 动态窗口法:实时限制无人机速度和转向角度,确保突发威胁下的快速避障 。
难点2:时空协同约束
- 时间协同:通过速度配比确保集群同时到达目标点,公式为 vi/Li=constvi/Li=const(LiLi 为第 ii 架无人机路径长度);
- 空间避障:引入排斥势场力防止机间碰撞,力模型为 Frep=k/∥dij∥2Frep=k/∥dij∥2(dijdij 为无人机间距)。
难点3:通信效率
- 轻量级协议:采用MAVLink传输路径关键节点信息,减少通信开销;
- 自组织网络(Ad-Hoc) :支持动态节点加入/退出,适应集群规模变化 。
三、最低成本目标函数的数学建模
目标函数需综合优化路径长度、高度、威胁暴露和转角成本,采用加权求和形式:
各子函数设计如下:
-
路径长度成本
其中 Pij 为路径节点坐标,优化目标为逼近理论最短路径 Lmin=∥S−D∥(S 为起点,D 为终点)。
-
高度成本
Hj 为节点高度,超出安全高度范围时惩罚值增大,避免过高(易暴露)或过低(碰撞风险)飞行 。
-
威胁成本
包含静态障碍物和动态威胁:dsafe 为安全距离,λ 为动态威胁衰减系数 。
-
转角成本
基于连续路径段的向量夹角计算:角度越大成本越高,约束无人机机动性能 。
四、TTHHO路径规划流程与避障策略
-
初始化阶段
- 随机生成无人机群初始位置,设定目标点、障碍物信息及算法参数(种群规模、最大迭代次数)。
-
瞬态三角搜索阶段
- 每架无人机计算三角顶点方向,选择适应度更高的方向移动(公式见第一节);
- 自适应能量方程控制探索与开发的切换 。
-
协同避障阶段
- 膨胀障碍物法:将障碍物边界扩展至安全距离,重新规划路径;
- 速度障碍法(Velocity Obstacles) :预测碰撞轨迹并调整速度矢量 。
-
攻击与开发阶段
接近目标时采用莱维飞行进行精细搜索:
- 终止条件
达到最大迭代次数或所有路径满足避障与目标到达条件时停止,输出最优路径集合 。
五、性能对比:TTHHO vs 传统算法
指标 | TTHHO | 传统HHO | PSO | 改进A* |
---|---|---|---|---|
平均路径长度 | 36.98 (缩短5.79%) | 39.25 | 41.20 | 38.50 |
路径转折次数 | 8 (减少52.94%) | 17 | 19 | 15 |
避障成功率 | 100% | 92% | 88% | 95% |
收敛迭代次数 | 120 | 200 | 250 | - |
威胁暴露成本 | 0.32 | 0.45 | 0.51 | 0.40 |
关键优势:
- 全局优化能力:瞬态三角策略使逃脱局部最优概率提升47% ;
- 动态适应性:在新增障碍物场景下重规划时间缩短32% ;
- 协同效率:分布式通信降低计算复杂度30% 。
六、应用案例与实验结果
-
三维城市环境避障
- 场景:50×50×50网格,含高层建筑与动态无人机威胁;
- 结果:TTHHO生成路径平均长度较HHO缩短12%,转角成本降低18% 。
-
山区地形协同勘探
- 场景:3架无人机协同探测,需保持队形并规避山体;
- 结果:高度波动减少25%,威胁暴露时间缩短40% 。
-
Matlab仿真验证
- 运行
main.m
一键生成路径图(图1-3),展示三维路径与成本收敛曲线 :
图:TTHHO路径规划结果
- 运行
七、技术挑战与未来方向
-
实时性瓶颈
大规模集群(>20架)下计算延迟显著,需结合强化学习实现在线优化 。 -
能量动态性
当前模型假设路由器全电池供电,未来需支持非充电设备(如传感器)的能耗约束 。 -
多目标权衡
权重系数 ωi 依赖经验设定,需引入帕累托前沿解自动寻优 。 -
异构集群扩展
现有研究假设无人机同构,未来需兼容不同机动性能的异构无人机协同 。
结论
TTHHO算法通过瞬态三角机制和分层协同结构,显著提升了多无人机路径规划的全局优化能力与动态避障效率。其在路径长度、高度稳定性、威胁规避及转角平滑性上的综合性能优于传统算法(HHO/PSO/A*),为复杂环境下的无人机集群应用提供了可靠解决方案。未来研究需聚焦实时计算优化、能量约束建模及异构集群协同等方向。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]谌海云,陈华胄,刘强.基于改进人工势场法的多无人机三维编队路径规划[J].系统仿真学报, 2020(3):414-420.
[2]温夏露,黄鹤,王会峰,等.基于秃鹰搜索算法优化的三维多无人机低空突防[J].浙江大学学报(工学版), 2024, 58(10):2020-2030.
[3]王文涛,叶晨,田军.基于多策略改进人工兔优化算法的三维无人机路径规划方法[J].电子学报, 2024, 52(11):3780-3797.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取