逻辑回归
今天我们要讲的模型叫做 Logistic Regression (LR),一般翻译为逻辑回归。
LR 是一种简单、高效的常用分类模型——有点奇怪是吧,为什么名字叫做“回归”却是一个分类模型,这个我们稍后再讲。先来看看这个 LR 本身。
LR 的模型函数记作:$y=h(x)$,具体形式如下:
$h_\theta(x) = \frac{1}{1 + e^{-\theta^Tx }} $
对应到一元自变量的形式为:
$h(x) = \frac{1}{1 + e^{-(a + bx) }} $
设 $z = a + bx$,则:
$h(z) = \frac{1}{1 + e^{-z }} $
这样的一个函数被称为逻辑函数,它在二维坐标中的表现是这样的:
因为表现为 S 形曲线,所以逻辑函数又被称为 Sigmod 函数(S 函数)。
Sigmod 这样一个奇怪而别扭的形式到底是谁、因为什么想出来的呢?又怎么想到用它来做分类的呢?
罗马不是一天建成的,Sigmod 函数也不是一天形成的。
说起来,逻辑回归的历史相当悠久,迄今大概已经有200年。它的前身,则在18世纪就已经出现了。
18世纪,随着工业革命的深入;世界经济、科技的发展;美洲的发现,及随之而来的大移民和北美人口迅猛增长……各个学科对于统计学的工具性需求越