PRML 学习: (1) Polynomial Curve Fitting

本系列文章由 @YhL_Leo 出品,转载请注明出处。 文章链接: http://blog.csdn.net/yhl_leo/article/details/75534111

多项式曲线拟合是比较基础的回归分析方法,假设有一独立变量 x x x 和与其相关的变量 y y y,存在着变量 x x x m m m 阶多项式可以模拟这种映射关系,可以用于解决一些非线性拟合问题。

1 基础概念

给定一组包含 n n n 个观测数据 x x x x = { x 0 , x 1 , … , x n } \mathbf{x} = \{ x_0, x_1, \dots, x_n \} x={ x0,x1,,xn},和其对应的预测值 y y y, y = { y 0 , y 1 , … , y n } \mathbf{y} = \{ y_0, y_1, \dots, y_n \} y={ y0,y1,,yn}, 例如图1中利用 s i n ( 2 π x ) sin(2\pi x) sin(2πx) 函数合成的观测数据(30组加入了随机均匀噪声的观测值)。我们的目标就是使用这样的一个观测数据,训练/学习到一个模型,当引入新的数值 x ^ \hat{x} x^ 时,可以有效得预测它对应的数值 y ^ \hat{y} y^

data

图 1

可以看出,实现这一目标暗示着,我们要尽可能地找到观测数据所对应的潜在的模型,即 s i n ( 2 π x ) sin(2\pi x) sin(2πx) 。 但是要通过有限的观测数据(含有噪声)准确地泛化出这一模型,是相当困难的。即便如此,我们还是可以把这一问题简化成为曲线拟合问题。我们指定采用的多项式形式为:

(1) y ( x , w ) = w 0 + w 1 x + w 2 ∗ x 2 + ⋯ + w m x m = ∑ i = 0 m w i x i , y(x, \mathbf{w}) = w_0 + w_1x + w_2*x^2 + \dots + w_mx^m = \sum_{i=0}^{m}w_ix^i, \tag{1} y(x,w)=w0+w1x+w2x2++wmxm=i=0mwixi,(1)

其中,取 x x x 幂次最高值 m m m, 称该多项式为 m m m 次多项式。虽然,该多项式是 x x x 的非线性函数,但是却是待系数 w \mathbf{w} w 的线性方程。方程 ( 1 ) (1) (1) 的矩阵形式为:
(2) Y = X w , \mathcal{\pmb{Y}} = \mathcal{\pmb{X}} \mathbf{w}, \tag{2} YYY=XXXw,(2)

其中,
Y = [ y 0 y 1 ⋮ y n ] , \mathcal{\pmb{Y}} = \left[ \begin{matrix} y_{0} \\ y_{1} \\ \vdots\\ y_{n} \end{matrix}\right] , YYY=y0y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值