哈希表原理与双散列实战指南

🌟 Hash 表入门详解:原理 + 开放定址 + 双散列(含 C++ 示例)

哈希表(Hash Table)是一种支持快速插入、删除、查找的高效数据结构,几乎所有编程语言都内置了它的变体(如 C++ 的 unordered_map、Java 的 HashMap)。
本文将通过直观类比 + C++ 示例代码,带你从 0 理解哈希表,特别是 开放定址法与双散列技术


在这里插入图片描述

🧠 一、哈希表的基本思想:映射存储

📦 类比:图书馆中找书

假设你在图书馆找书:

  • 正常做法:挨本翻,效率极低;
  • 聪明做法:根据书的编号 → 找到固定书架位置

哈希表也是这样:

把“键值”通过某种规则变成数组下标 —— 哈希函数(Hash Function),然后把值存在这个位置上。


📐 二、哈希函数:让钥匙变成下标

最常用的哈希函数之一是:

h(k) = k % m
  • k: 关键字(如学号、身份证号等)
  • m: 哈希表大小(通常为质数)
  • %: 取余操作,相当于“将所有键值均匀撒到 0~m-1 中”。

示例:

k = 1234, m = 10
h(k) = 1234 % 10 = 4

👉 把编号 1234 的学生记录存到数组下标为 4 的位置。


💥 三、冲突了怎么办?(关键)

🎯 什么是冲突?

不同的 k,可能通过哈希函数算出的下标一样,称为哈希冲突(collision)

比如:

h(1234) = 4
h(5674) = 4   // 冲突了!

🔁 四、解决冲突:开放定址法(Open Addressing)

✨ 思路:

如果目标位置被占,就往后找空位。

📊 常见策略:

策略名探测方式示例(已知 h(k)=4)
线性探测i 次冲突后,检查 (h(k) + i) % m4, 5, 6, 7…
平方探测h(k) + i²4, 5, 8, 13…
🔥 双散列法h(k) + i × h2(k)4, 4+h2, 4+2×h2…

🚀 五、重点:双散列法(Double Hashing)

双散列是一种冲突更少、分布更好的方法,避免“堆积”效应。

📌 双散列公式:

Hi = (hash1(k) + i × hash2(k)) % m
  • hash1(k):主哈希函数,一般是 k % m
  • hash2(k):副哈希函数,常见是 c - (k % c),其中 c 是小于 m 的质数

这样可以跳跃式探测空位,不容易发生“线性堆积”。


✅ 六、完整 C++ 示例:双散列插入与查找

#include <iostream>
#include <vector>
using namespace std;

const int TABLE_SIZE = 11; // 哈希表大小
const int C = 7;           // 小于表长的质数,用于双散列

class HashTable {
private:
    vector<int> table;
    vector<bool> occupied;

    int hash1(int key) {
        return key % TABLE_SIZE;
    }

    int hash2(int key) {
        return C - (key % C);
    }

public:
    HashTable() : table(TABLE_SIZE, -1), occupied(TABLE_SIZE, false) {}

    // 插入元素
    void insert(int key) {
        int h1 = hash1(key);
        int h2 = hash2(key);

        for (int i = 0; i < TABLE_SIZE; i++) {
            int index = (h1 + i * h2) % TABLE_SIZE;
            if (!occupied[index]) {
                table[index] = key;
                occupied[index] = true;
                cout << "插入 " << key << " 到位置 " << index << endl;
                return;
            }
        }
        cout << "插入失败,表已满\n";
    }

    // 查找元素
    int search(int key) {
        int h1 = hash1(key);
        int h2 = hash2(key);

        for (int i = 0; i < TABLE_SIZE; i++) {
            int index = (h1 + i * h2) % TABLE_SIZE;
            if (!occupied[index]) return -1;
            if (table[index] == key) return index;
        }
        return -1;
    }

    // 打印哈希表
    void print() {
        for (int i = 0; i < TABLE_SIZE; i++) {
            cout << i << ": " << (occupied[i] ? to_string(table[i]) : "空") << endl;
        }
    }
};

int main() {
    HashTable ht;

    // 插入一些元素
    ht.insert(10);
    ht.insert(21);
    ht.insert(32);
    ht.insert(43); // 冲突,尝试双散列探测

    ht.print();

    // 查找测试
    int key = 21;
    int idx = ht.search(key);
    if (idx != -1)
        cout << "找到 " << key << " 在位置 " << idx << endl;
    else
        cout << "未找到 " << key << endl;

    return 0;
}

📊 七、性能分析简述

  • 装填因子 α = 已存元素个数 / 表长
  • α 越大,冲突越多,性能下降。
  • 双散列在开放定址中是性能最优的探测方式之一。
  • 在 α < 0.7 时,平均查找长度 ≈ 1~2 次探测。

🎁 八、小结 & 建议

内容
核心结构哈希表 = 数组 + 哈希函数
冲突解决开放定址法 + 双散列
实战技巧表长 m 选质数,hash2(k) 要与 m 互素
性能建议控制装填因子 < 0.7,避免频繁冲突

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yhame.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值