[解决方案]Error attaching to core file: cannot open binary file

本文介绍了如何解决使用`jstack`命令时遇到的`Error attaching to core file: cannot open binary file`错误,提供了一种将输出直接打印到控制台的临时解决方案,并探讨了在Java 9及以上版本中使用`jhsdb jstack`命令导出日志的方法。此外,文章还提及了Java程序内存泄漏的排查方法,帮助开发者应对线上环境中的性能问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决方案

出现原因

面试官:线上java程序cpu一直满载运行你是怎么排查的
我: 吧啦吧啦。。。。线上日志查看
面试官:好,谢谢你参加我们公司的面试。

。。。有被难受到,楼主目前所在公司业务模块上线运营3年多了,线上出现的问题都能排查解决到,但cpu过高确实没碰到过,回来补习。

再来一次什么叫一波三折。(尤其是上面这个问题)

出错命令在这里

我猜你也是这样的命令(如果不是也没关系 可以试着看完)

 jstack 9302 -> test_webtest_log.txt

[root@rd001 ~]# jstack 9302 -> test_webtest_log.txt
Error attaching to core file: cannot open binary file
sun.jvm.hotspot.debugger.DebuggerException: cannot open binary file
	at sun.jvm.hotspot.debugger.linux.LinuxDebuggerLocal.attach0(Native Method)
	at sun.jvm.hotspot.debugger.linux.LinuxDebuggerLocal.attach(LinuxDebuggerLocal.java:286)
	at sun.jvm.hotspot.HotSpotAgent.attachDebugger(HotSpotAgent.java:673)
	at sun.jvm.hotspot.HotSpotAgent.setupDebuggerLinux(HotSpotAgent.java:611)
	at sun.jvm.hotspot.HotSpotAgent.setupDebugger(HotSpotAgent.java:337)
	at sun.jvm.hotspot.HotSpotAgent.go(HotSpotAgent.java:304)
	at sun.jvm.hotspot.HotSpotAgent.attach(HotSpotAgent.java:156)
	at sun.jvm.hotspot.tools.Tool.start(Tool.java:191)
	at sun.jvm.hotspot.tools.Tool.execute(Tool.java:118)
	at sun.jvm.hotspot.tools.JStack.main(JStack.java:92)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at sun.tools.jstack.JStack.runJStackTool(JStack.java:140)
	at sun.tools.jstack.JStack.main(JStack.java:106)

解决方案在这里

 jstack 9302 

该命令会将当前java进程的线程运行日志直接打印在控制台上
我们可以先打印在控制台 在复制出来。
虽然有点笨 但目前看只能这样 ,楼主查阅了很多资料

有关一个外网的解决方案

解决方案提供的链接
在这里插入图片描述
楼主直接升级到了jdk11版本,接下来看效果
请添加图片描述

还是不太行。又反复尝试解决了好久。终于。。。。。。出来了
在java9及以上版本中通过该命令可以做到将日志输出到本地文件中
PS:java8中无jhsdb命令

jhsdb jstack --pid 3041 -> test_bbbbbb.log

总结

  1. 直接输出到控制台,复制出来查看
  2. 升级jdk版本为9或者9以上通过jhsdb命令输出到文件里面

延伸(java程序内存泄漏怎么排查)

java程序内存泄漏怎么排查

希望本文可以帮到你。

### NVIDIA 驱动未加载导致 Docker 启动失败的原因分析与解决方案 当尝试启动基于 GPU 的 Docker 容器时,如果遇到 `nvidia-container-cli: initialization error: nvml error: driver not loaded` 或类似的错误消息,则表明系统未能成功初始化 NVIDIA 驱动程序。以下是可能原因及对应的解决方法: #### 1. **确认 NVIDIA 显卡驱动已安装并正常工作** 如果系统的 NVIDIA 驱动未正确安装或未被加载到内核中,可能会引发此问题。可以通过以下命令验证驱动状态: ```bash lsmod | grep nvidia ``` 若无任何输出,则说明 NVIDIA 驱动未加载。此时需进入 BIOS 设置,启用 NVIDIA 显卡支持,并重新安装适合当前操作系统的 NVIDIA 驱动版本[^1]。 #### 2. **检查 NVIDIA Container Toolkit 是否配置正确** NVIDIA 提供了一个专门用于管理 GPU 资源的工具包——NVIDIA Container Toolkit。该工具负责在容器环境中集成 NVIDIA 驱动功能。若其配置不正确,可能导致无法识别 GPU 设备。 - 确认是否已安装 NVIDIA Container Toolkit 及相关依赖项: ```bash dpkg -l | grep nvidia-docker ``` - 如缺失,请按照官方指南完成安装和配置流程[^2]: ```bash distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt-get update && sudo apt-get install -y nvidia-docker2 ``` #### 3. **排查是否存在重复 ID 的容器实例** 错误日志中提到 `container with id exists` 表明可能存在具有相同 ID 的残留容器数据文件夹。这通常发生在强制删除正在运行中的容器之后。 使用以下指令清理冲突资源: ```bash docker ps -a --filter "status=exited" docker rm $(docker ps -aq --filter "status=exited") ``` 此外还需注意重启 Docker 服务以刷新环境变量缓存[^3]: ```bash systemctl restart docker ``` #### 4. **调整操作系统参数适应命名空间需求** 当前主机的操作系统可能设置了过低的最大用户命名空间数量限制 (`max_user_namespaces`) ,从而阻止某些复杂应用程序创建所需的工作区结构。通过临时修改或者永久保存新的数值来解决问题[^4]: - 查看现有设定值: ```bash sysctl -n user.max_user_namespaces ``` - 增加允许范围至合理区间(例如 15000): ```bash echo "user.max_user_namespaces=15000" >> /etc/sysctl.conf sysctl -p ``` --- ### 总结 综上所述,针对 `OCI runtime create failed` 和 `driver not loaded` 类型的问题,应依次从硬件层面、软件框架以及底层资源配置三个方面逐一排除潜在隐患。具体措施包括但不限于校验 NVIDIA 驱动兼容性、修复 NVIDIA Container Toolkit 功能缺陷、清除冗余容器记录以及优化 Linux 内核策略等方面入手加以改进。 ```python # 示例 Python 脚本片段展示如何自动化检测部分条件 import os def check_nvidia_driver(): result = os.popen('lsmod | grep nvidia').read() return bool(result) if __name__ == "__main__": if not check_nvidia_driver(): print("NVIDIA Driver Not Loaded!") ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值