深度学习Week9——利用TensorFlow实现天气识别

文章目录
深度学习Week9——利用TensorFlow实现天气识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
四、数据预处理
1、加载数据
2、可视化数据
3、检查数据
4、配置数据集
五、构建CNN模型
五、编译模型
六、训练模型
七、预测与评估
1、Accuracy图
八、总结

一、前言

学习深度学习的第九周,重新学习的第三周

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.11.3
  • 编译器:Pycharm2023.2.3
    深度学习环境:TensorFlow
    显卡及显存:RTX 3060 8G

三、前期工作

1、导入库并配置环境

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")

这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)

2、 导入数据

导入天气数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),天气数据集来源于K同学啊的网盘:天气数据集

data_dir = "E:\Deep_Learning\Data\Week3\weather_photos"

data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)

#查看第一张图片:
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))

图片总数为: 1125
在这里插入图片描述

四、数据预处理

1、加载数据

使用image_dataset_from_directory方法将磁盘中的数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值