文章目录
深度学习Week9——利用TensorFlow实现天气识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
四、数据预处理
1、加载数据
2、可视化数据
3、检查数据
4、配置数据集
五、构建CNN模型
五、编译模型
六、训练模型
七、预测与评估
1、Accuracy图
八、总结
一、前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
学习深度学习的第九周,重新学习的第三周
二、我的环境
- 电脑系统:Windows 10
- 语言环境:Python 3.11.3
- 编译器:Pycharm2023.2.3
深度学习环境:TensorFlow
显卡及显存:RTX 3060 8G
三、前期工作
1、导入库并配置环境
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpu0], "GPU")
这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)
2、 导入数据
导入天气数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),天气数据集来源于K同学啊的网盘:天气数据集
data_dir = "E:\Deep_Learning\Data\Week3\weather_photos"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)
#查看第一张图片:
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))
图片总数为: 1125
四、数据预处理
1、加载数据
使用image_dataset_from_directory
方法将磁盘中的数