深度学习Week11——利用TensorFlow实现运动鞋识别

文章目录
深度学习Week11——利用TensorFlow实现运动鞋识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
四、数据预处理
1、加载数据
2、可视化数据
3、检查数据
4、配置数据集
五、构建CNN模型
1、设置动态学习率
2、早停与保存最佳模型参数
五、编译模型
六、训练模型
七、预测与评估
1、Accuracy图
八、拓展

一、前言

本篇内容分为两个部分,前面部分是学习K同学给的算法知识点以及复现,后半部分是自己的拓展与未解决的问题

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.8.0
  • 编译器:Pycharm2023.2.3
    深度学习环境:TensorFlow
    显卡及显存:RTX 3060 8G

三、前期工作

1、导入库并配置环境

from tensorflow       import keras
from tensorflow.keras import layers,models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow        as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")
    
gpus

这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)

2、 导入数据

导入猴痘病与其他数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊的网盘:数据集

data_dir = "E:\Deep_Learning\Data\Week5"

data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*/*.jpg')))

print("图片总数为:",image_count)

#查看第一张图片:
roses = list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

图片总数为: 578
在这里插入图片描述

四、数据预处理

1、加载数据

batch_size = 32
img_height = 224
img_width = 224

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset

tf.keras.preprocessing.image_dataset_from_directory()会将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据。

  • class_names
  • validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。
  • subset: training或validation之一。仅在设置validation_split时使用。
  • seed: 用于shuffle和转换的可选随机种子。
  • batch_size: 数据批次的大小。默认值:32
  • image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "E:\Deep_Learning\Data\Week5\\train",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出:

Found 502 files belonging to 2 classes.

  1. 验证集并没有参与训练过程梯度下降过程的,狭义上来讲是没有参与模型的参数训练更新的。
  2. 但是广义上来讲,验证集存在的意义确实参与了一个“人工调参”的过程,我们根据每一个epoch训练之后模型在valid data上的表现来决定是否需要训练进行early stop,或者根据这个过程模型的性能变化来调整模型的超参数,如学习率,batch_size等等。
  3. 因此,我们也可以认为,验证集也参与了训练,但是并没有使得模型去overfit验证集
""" 	
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    "E:\Deep_Learning\Data\Week5\\test",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

输出:

Found 76 files belonging to 2 classes.

我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。

class_names = train_ds.class_names
print(class_names)

[‘adidas’, ‘nike’]

2、数据可视化

# 查看前20个图片
plt.figure(figsize=(20, 10))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值