文章目录
深度学习Week16——数据增强
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
2.1 加载数据
2.2 配置数据集
2.3 数据可视化
四、数据增强
五、增强方式
1、将其嵌入model中
2、在Dataset数据集中进行数据增强
六、训练模型
七、自定义增强函数
一、前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
本篇内容分为两个部分,前面部分是学习K同学给的算法知识点以及复现,后半部分是自己的拓展与未解决的问题
本期学习了数据增强函数并自己实现一个增强函数,使用的数据集仍然是猫狗数据集。
二、我的环境
- 电脑系统:Windows 10
- 语言环境:Python 3.8.0
- 编译器:Pycharm2023.2.3
深度学习环境:TensorFlow
显卡及显存:RTX 3060 8G
三、前期工作
1、配置环境
import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
输出:
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
这一步与pytorch第一步类似,我们在写神经网络程序前无论是选择pytorch还是tensorflow都应该配置好gpu环境(如果有gpu的话)
2、 导入数据
导入所有猫狗图片数据,依次分别为训练集图片(train_images)、训练集标签(train_labels)、测试集图片(test_images)、测试集标签(test_labels),数据集来源于K同学啊
2.1 加载数据
data_dir = "/home/mw/input/dogcat3675/365-7-data"
img_height = 224
img_width = 224
batch_size = 32
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
使用
image_dataset_from_directory
方法将磁盘中的数据加载到tf.data.Dataset
中
tf.keras.preprocessing.image_dataset_from_directory()
会将文件夹中的数据加载到tf.data.Dataset中,且加载的同时会打乱数据。
- class_names
- validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。
- subset: training或validation之一。仅在设置validation_split时使用。
- seed: 用于shuffle和转换的可选随机种子。
- batch_size: 数据批次的大小。默认值:32
- image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
输出:
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
由于原始的数据集里不包含测试集,所以我们需要自己创建一个
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)
print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
Number of validation batches: 60
Number of test batches: 15
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
[‘cat’, ‘dog’]
2.2 配置数据集
AUTOTUNE = tf.data.AUTOTUNE
def preprocess_image(image,label):
return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.