- 博客(5487)
- 资源 (35)
- 收藏
- 关注
转载 在CloudCompare下如何将PLY点云数据转成深度图显示效果
调整properties中dispaly range的数值,点云本身深度区间最佳。下图是用苏州三迪斯维智能科技有限公司的。重建的硬币,本教程将用此素材做演示。将点云的颜色按照深度范围筛选后显示。演示素材已放至知识星球,需要自取。一 根据坐标系对点云着色。来源:计算机视觉工坊。
2025-05-22 07:05:39
30
转载 清华重磅开源!路径规划和机械臂抓取全搞定!首个支持闭环干预的虚实融合平台
这篇文章提出了一个名为 DVS 的动态虚实融合仿真平台,融合了可配置的行人行为模拟、大规模室内场景、光学动作捕捉系统和基于 ROS 的虚实双向通信机制,旨在解决当前机器人系统在动态复杂场景下虚实迁移困难的问题。平台设计了两个核心模块,分别支持数据感知生成与机器人任务学习,构建了大规模虚实融合数据集,并通过一系列实验验证了平台在抓取任务、轨迹预测、社交导航等典型任务中的有效性。实验表明,平台能够有效支持机器人导航和人与机器人互动的研究,机器人在复杂动态环境中的任务执行表现良好,实现了闭环控制的能力。
2025-05-22 07:05:39
79
转载 2026校招!先临三维招网格处理、SLAM、深度学习、三维重建方向研发实习生!
先临三维科技股份有限公司成立于2004年,是三维视觉领域国家级制造业单项冠军、国家专精特新重点“小巨人”企业。公司专注于高精度三维视觉软、硬件的研发和应用,致力于成为具有全球影响力的三维视觉技术企业,推动高精度三维视觉技术的普及应用。○ 享优厚薪酬补贴,宿舍食堂健身房一应俱全,助力无忧实习。○ 实习满三月,凭优异表现,可提前锁定正式就业意向。嵌入式软件测试、硬件测试、软件测试、产品认证。网格处理、SLAM、深度学习、三维重建。承担十余项国家、省、市重要科技项目。面向海内外2026届应届毕业生。
2025-05-22 07:05:39
9
转载 RAL‘25开源 | 港科大重磅直播:深入探索VIO领域的重难点!
现于香港科技大学任博士后研究员,博士毕业于华中科技大学,师从杨欣教授。研究方向为多传感器融合SLAM,机器人自主探索,神经渲染,在RA-L,TPAMI,IROS,ICRA等期刊及会议上发表多篇论文,并担任RA-L,IROS,ICRA等学术期刊及会议审稿人。,为大家详细介绍他的工作。,为大家详细介绍他的工作。:3D视觉工坊很荣幸再次邀请到了香港科技大学任博士后研究员。3D视觉工坊很荣幸再次邀请到了香港科技大学任博士后研究员。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。3D视觉工坊哔哩哔哩。
2025-05-21 07:02:00
20
转载 如何快速选择一款适配的高精度3D结构光相机?
KW系列3D相机采用主动结构光技术,拍摄速度快、成像精细、方案成熟稳定,针对不同应用场景物体可输出高质量点云数据图,精度高、速度快、环境自适应性强,适用于工件上下料、拆码垛、机器人视觉引导等多种应用场景。除以上,本产品提供的SDK和使用教程较为完善,使用起来非常方便。KW-Lumos-W!KW-Lumos-W!四 KW系列3D相机重建效果展示。2.5m远重建黑色箱子。三 KW系列3D相机参数汇总。
2025-05-21 07:02:00
20
转载 RAL‘25开源 | 港科大重磅直播:深入探索VIO领域的重难点!
现于香港科技大学任博士后研究员,博士毕业于华中科技大学,师从杨欣教授。研究方向为多传感器融合SLAM,机器人自主探索,神经渲染,在RA-L,TPAMI,IROS,ICRA等期刊及会议上发表多篇论文,并担任RA-L,IROS,ICRA等学术期刊及会议审稿人。,为大家详细介绍他的工作。,为大家详细介绍他的工作。:3D视觉工坊很荣幸再次邀请到了香港科技大学任博士后研究员。3D视觉工坊很荣幸再次邀请到了香港科技大学任博士后研究员。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。3D视觉工坊哔哩哔哩。
2025-05-21 07:02:00
18
转载 你管这玩意叫AI陪聊?
打开这个配置文件,设备的 token 和 name,你可以随便设置一下,然后需要配置一下这里的 LLM,我们调用的 AliLLM,在 AliLLM 的配置里,写上在那个 txt 里记下的 api_key。两个大参数的 MoE 模型,通过专家分工提升效率,而六个小参数的 Dense 模型,则适合轻量化场景,要深度有深度,要速度有速度,根据自己的需求选择就行,基本覆盖了全尺寸。的同级目录下,然后打开命令行工具,进到这个项目的根目录下,指定一下音频文件,写上对用的文本,指定中文语种。
2025-05-20 07:03:04
37
转载 CVPR‘25 | 竟可去除遮挡?DeclutterNeRF:鲁棒高效的3D场景重建!
来源:JOJO极智算法「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!markdown引入新数据集:论文引入DeclutterSet数据集,该数据集具有多样化的真实世界遮挡场景,涵盖多位置空间分布和视点相关变化,为评估遮挡去除方法提供更现实的基准。提出无生成式框架:提出DeclutterNeRF,一种无生成式的遮挡去除框架。该框架利用NeRF的
2025-05-20 07:03:04
46
转载 无代码训练,精度高达90%!目标检测已经简单到这地步了吗?
即使研究三维视觉的伙伴也发现,检测也是必备的基础,如在做人脸的重建,也离不开检测框,不然无法ROI重建;目标检测通常是指在图像中检测出物体出现的位置及对应的类别,它是计算机视觉中的根本问题之一,同时也是最基础的问题,如图像分割、物体追踪、关键点检测等都依赖目标检测。但除了努力之外,我们更应该清楚的知道, 哪些技术需要重点掌握,学习时频繁踩坑,最终浪费大量时间,所以有一套实用的课程用来跟着学习是非常有必要的。,而这一门槛是真正考核我们能力的标尺。在工作时会发现,由于基础不牢,在深入研究与创新中也是步履维艰。
2025-05-20 07:03:04
623
转载 无人机如何在城市迷宫中自主锁定目标?开源CityAVOS:在城市中零样本自主视觉搜索!
这篇文章针对复杂城市环境中的无人机自主视觉目标搜索(AVOS)任务展开研究,首次系统性地形式化该任务,并构建了首个专用基准数据集 CityAVOS,涵盖多样化的城市目标和场景。为有效完成该任务,作者提出了一种新颖的方法——PRPSearcher,它构建了类人三层认知架构,通过语义图、认知图和不确定性图模拟人的感知、推理与规划过程,同时引入了IPT提示机制,引导无人机在探索与利用之间动态权衡。PRPSearcher相比现有的方法,能够更快地定位目标,减少搜索所需的时间和路径长度,表现出更高的行动效率。
2025-05-20 07:03:04
28
转载 CVPR‘25 | 竟可去除遮挡?DeclutterNeRF:鲁棒高效的3D场景重建!
来源:JOJO极智算法「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!markdown引入新数据集:论文引入DeclutterSet数据集,该数据集具有多样化的真实世界遮挡场景,涵盖多位置空间分布和视点相关变化,为评估遮挡去除方法提供更现实的基准。提出无生成式框架:提出DeclutterNeRF,一种无生成式的遮挡去除框架。该框架利用NeRF的
2025-05-20 07:03:04
22
转载 CVPR‘25 | 竟可去除遮挡?DeclutterNeRF:鲁棒高效的3D场景重建!
来源:JOJO极智算法「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!markdown引入新数据集:论文引入DeclutterSet数据集,该数据集具有多样化的真实世界遮挡场景,涵盖多位置空间分布和视点相关变化,为评估遮挡去除方法提供更现实的基准。提出无生成式框架:提出DeclutterNeRF,一种无生成式的遮挡去除框架。该框架利用NeRF的
2025-05-20 07:03:04
12
转载 深度学习训练,怎么知道会不会爆显存?
然后我们可以查看SASS代码。NVIDIA文档(https://docs.nvidia.com/gameworks/content/developertools/desktop/ptx_sass_assembly_debugging.htm)将SASS描述为低级汇编语言,它编译为二进制微代码,可在NVIDIA GPU硬件上原生执行。如果我们忽略位移指令的成本(或者如上所述简单地消除它),我们就能理解为什么第二个kernel快得多:我们执行的指令少得多,因为我们只启动了非向量化版本中加载块数的一小部分。
2025-05-19 07:02:13
46
转载 CVPR‘25开源 | WildGS-SLAM:适用于动态场景中的单目SLAM方法!
CVPR'25开源 | WildGS-SLAM: 适用于动态场景中的单目SLAM方法!斯坦福大学梯度空间实验室在读博士。研究方向为复杂环境中的相机定位及四维重建。,为大家详细介绍他的工作。如果您有相关工作需要分享,欢迎联系我们。,为大家详细介绍他的工作。:本次分享我们邀请到了斯坦福大学梯度空间实验室在读博士。本次分享我们邀请到了斯坦福大学梯度空间实验室在读博士。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。WildGS-SALM 方法介绍。动态环境下的定位与重建问题介绍。3D视觉工坊哔哩哔哩。
2025-05-19 07:02:13
50
转载 代码实战 | 八叉树地图构建和重定位
这里用里程计和camera_init做了静态映射,并使用odom作为八叉树地图的frame_id,这样就可以一边构建3dslam地图一边构建八叉树地图,而且构建八叉树地图的时候也是在构建2d栅格地图,使用该方法进行仿真建图对电脑的性能需求更高一点,在电脑性能不是很足的时候更推荐单独使用octomap进行建图(同样的使用里程计作为frame_id,效果是差不多的,这样甚至可以免除开启gmapping的烦恼),也可以使用FAST_LIO_LOCALIZATION重定位来进行frame_id的选取。
2025-05-18 00:02:54
43
转载 ICMR‘25 | 多视角&动态激活,DARTer:无人机跟踪起飞!刷新五大SOTA!
我们提出了 DARTer(动态自适应表示跟踪器),这是一个用于夜间 UAV 跟踪的端到端框架,集成了动态特征融合器(DFB)用于多视角特征融合,以及动态特征激活器(DFA)用于自适应 Vision Transformer 激活,增强了特征的鲁棒性,同时减少了计算冗余。可以清楚地看到,我们的模型具有更高的跟踪精度和更强的鲁棒性,证明了我们提出的模块在夜间跟踪中的有效性。:在五个主要的夜间 UAV 跟踪基准测试中,DARTer 显示了优异的性能,超越了当前最先进的跟踪算法,证明了其在精度和效率上的平衡能力。
2025-05-18 00:02:54
46
转载 KW-DCW!3D相机Python版本SDK使用教程详解
这使得它成为一款强大的3D相机,特别适用于3D扫描、工业3D缺陷检测,并可与机器人在工业无序抓取、上下料等场景下无缝配合使用。本文以KW-DCW 3D相机为例,介绍如何使用Python SDK采集数据的两种方法,对于其他型号的相机,KW-SCW、KW-LCW用法相同。我们对金属零配件进行了高动态下的成像测试,KW相机在高反光场景下表现非常出色,点云成像效果令人惊艳,展现了其卓越的成像性能。经过以上sdk的使用方法,便可以进行控制相机采图,并得到与使用GUI调参效果一致的点云数据了。
2025-05-18 00:02:54
23
转载 重磅!单目/双目相位偏折术2.5D测量科研套件
采用自研创新的标定方法,屏幕显示条纹图案,平面镜任意摆动多个位姿,即可直接标定出屏幕位姿,算法稳定、鲁棒,重投影误差小于0.2像素。如果你从事偏折术研究,强烈推荐选择我们这个开发者套件,它集合了作者至少3年的时间心血,从而达到业界研究的顶尖算法性能。该PMD套件提供业内顶尖的偏折术算法性能,研究者可以在此基础上迅速展开实验,并且发表相应论文。b) 双目PMD重建算法;缺陷增强:计算X/Y方向的相位图的调制度、梯度、法向量,增强放大缺陷信息;非线性矫正算法:先进的非线性矫正算法,预先矫正屏幕误差;
2025-05-18 00:02:54
33
转载 ICMR‘25 | 多视角&动态激活,DARTer:无人机跟踪起飞!刷新五大SOTA!
我们提出了 DARTer(动态自适应表示跟踪器),这是一个用于夜间 UAV 跟踪的端到端框架,集成了动态特征融合器(DFB)用于多视角特征融合,以及动态特征激活器(DFA)用于自适应 Vision Transformer 激活,增强了特征的鲁棒性,同时减少了计算冗余。可以清楚地看到,我们的模型具有更高的跟踪精度和更强的鲁棒性,证明了我们提出的模块在夜间跟踪中的有效性。:在五个主要的夜间 UAV 跟踪基准测试中,DARTer 显示了优异的性能,超越了当前最先进的跟踪算法,证明了其在精度和效率上的平衡能力。
2025-05-18 00:02:54
32
转载 ICMR‘25 | 多视角&动态激活,DARTer:无人机跟踪起飞!刷新五大SOTA!
我们提出了 DARTer(动态自适应表示跟踪器),这是一个用于夜间 UAV 跟踪的端到端框架,集成了动态特征融合器(DFB)用于多视角特征融合,以及动态特征激活器(DFA)用于自适应 Vision Transformer 激活,增强了特征的鲁棒性,同时减少了计算冗余。可以清楚地看到,我们的模型具有更高的跟踪精度和更强的鲁棒性,证明了我们提出的模块在夜间跟踪中的有效性。:在五个主要的夜间 UAV 跟踪基准测试中,DARTer 显示了优异的性能,超越了当前最先进的跟踪算法,证明了其在精度和效率上的平衡能力。
2025-05-18 00:02:54
17
转载 ICMR‘25 | 多视角&动态激活,DARTer:无人机跟踪起飞!刷新五大SOTA!
我们提出了 DARTer(动态自适应表示跟踪器),这是一个用于夜间 UAV 跟踪的端到端框架,集成了动态特征融合器(DFB)用于多视角特征融合,以及动态特征激活器(DFA)用于自适应 Vision Transformer 激活,增强了特征的鲁棒性,同时减少了计算冗余。可以清楚地看到,我们的模型具有更高的跟踪精度和更强的鲁棒性,证明了我们提出的模块在夜间跟踪中的有效性。:在五个主要的夜间 UAV 跟踪基准测试中,DARTer 显示了优异的性能,超越了当前最先进的跟踪算法,证明了其在精度和效率上的平衡能力。
2025-05-18 00:02:54
19
转载 CVPR 2025 最佳论文候选 FoundationStereo | 英伟达开源双目深度估计大模型
Bowen Wen(温伯文)是英伟达研究院的高级科学家。他的研究领域包括机器人感知和计算机视觉。近期他专注于大型三维视觉感知和学习基础模型,以促进机器人技术或具身智能的发展。他主导的项目曾在计算机视觉和机器人两大领域的顶会(CVPR 2025, RSS 2022)都获得过最佳论文奖提名。在攻读博士期间,他曾在Google[X]、Meta Reality Labs、Amazon Lab 126和商汤科技担任研究实习生。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。如果您有相关工作需要分享,欢迎联系我们。
2025-05-17 00:02:00
37
转载 2025年,热点3D视觉技术一览!
即可免费领取计算机视觉精品视频与慕尼黑工业大学、巴塞罗那自治大学沉淀多年的计算机视觉课件资料,包括相机标定、立体匹配、三维重建、SLAM、三维点云、缺陷检测、深度估计、四旋翼无人机等。包括3D视觉传感器、3D视觉系统集成设备、缺陷检测设备、SLAM产品、自动驾驶。「计算机视觉工坊」公众号,主要专注3D视觉、计算机视觉算法、SLAM、三维点云处理、三维重建、自动驾驶、图像处理等领域技术干货分享。「3D视觉工坊」公众号,由多位985硕博士共同运营,主要专注3D视觉,包括工业3D视觉、自动驾驶、SLAM算法。
2025-05-16 09:01:32
28
转载 盘点!港大今年开源了哪些SLAM算法?
实时估算曝光时间,适应剧烈光照变化;图片来源:《FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry》, IEEE T-RO,2024.图片来源:《FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry》, IEEE T-RO,2024.图片来源:《FAST-LIVO2: Fast, Direct LiDAR-Inertial-Visual Odometry》, IEEE T-RO,2024.
2025-05-15 07:08:06
681
转载 深入解析PID控制算法:从理论到实践的完整指南
spike 的英文含义是尖刺,这里指的是当系统运行过程中,突然改变 setpoint 时, PID 的微分部分会因 setpoint 的突然切换而生成一个极大的导数,导致算法输出值 output 将产生一次急剧变化,这就是 spike。PID 是目前最常见的应用于闭环反馈控制系统的算法,三个部分可以只用一个(P,I,D),也可以只用两个(PI,PD),也可以三个一起用(PID),非常灵活。如果提到 ouput,指的是 PID 算法输出,相当于上节中的系统输入 input(t),即加热功率。
2025-05-15 07:08:06
29
转载 是什么魔法?高反射物体三维重建达微米级!
通过对相机拍摄的变形的条纹进行解调,就可以恢复镜面的三维形貌。因此,即使是肉眼无法察觉的微小缺陷,如划痕、凸起、裂纹、凹陷和气泡,都可以被准确检测和定位。而在实际应用层面,将通过实际项目的操作,手把手教授学员复现相位测量偏折术的一整套流程,并指导如何将这些技能应用于个人项目中。这样的课程将为学习者提供全面的学术指导,从理论到实践,让他们能够掌握相位测量偏折术的原理,并在学术界和实际应用中展现出所学的深度和广度。本课程答疑主要在本课程对应的鹅圈子中答疑,学员学习过程中,有任何问题,可以随时在鹅圈子中提问。
2025-05-13 07:03:27
224
转载 TRO‘25 开源 | 无需中间模块!最新端到端的机器人导航方案NeuPAN!任意复杂场景下都能用!
研究方向为机器人自主导航规划。研究聚焦于自主导航系统在复杂场景下的运动控制。担任TRO, RA-L, IROS, ICRA等学术期刊及会议审稿人。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。NeuPAN-planner在实物机器人上的部署。如果您有相关工作需要分享,欢迎文末联系我们。NeuPAN-planner在复杂场景下的表现。NeuPAN-planner的架构与优势。:本次分享我们邀请到了香港大学博士。本次分享我们邀请到了香港大学博士。当前机器人导航方案的挑战。3D视觉工坊哔哩哔哩。
2025-05-13 07:03:27
33
转载 TRO‘25 开源 | 无需中间模块!最新端到端的机器人导航方案NeuPAN!任意复杂场景下都能用!
研究方向为机器人自主导航规划。研究聚焦于自主导航系统在复杂场景下的运动控制。担任TRO, RA-L, IROS, ICRA等学术期刊及会议审稿人。扫码观看直播,或前往B站搜索3D视觉工坊观看直播。NeuPAN-planner在实物机器人上的部署。如果您有相关工作需要分享,欢迎文末联系我们。NeuPAN-planner在复杂场景下的表现。NeuPAN-planner的架构与优势。:本次分享我们邀请到了香港大学博士。本次分享我们邀请到了香港大学博士。当前机器人导航方案的挑战。3D视觉工坊哔哩哔哩。
2025-05-13 07:03:27
38
原创 windows下安装python软件
Python安装完毕后,不但可以在Windows命令行(cmd) 使用交互模式,还可以使用安装程序自带的交互式开发工具IDLE。至此,Python最新版安装程序就安装完毕了。使用Windows终端(cmd)或者IDLE开发工具,都可以启动。以上,由此可验证Python已经成功安装在windows电脑上。点击左下角搜索栏Type here to search,输入。, 选择命令行提示符,并点击“IDLE交互式开发模式。
2025-05-11 16:12:40
75
转载 ICRA 2025开源 | 大语言模型LLM助力,Hier-SLAM推动高效三维语义理解新突破
尤其重要的是,Hier-SLAM 首次展现了在超过 500 类语义场景中仍能高效运行的能力,充分体现了其强大的扩展性。本文提出了 Hier-SLAM,这是一种基于语义的三维高斯溅射 SLAM 方法,具备全新的层级类别表示方式,能够实现精准的全局三维语义建图、良好的扩展性,以及三维世界中显式的语义标签预测。为构建任意类别的语义树结构,本工作同时考虑语义信息的功能属性与几何属性,借助大语言模型(LLMs)自动构建结构合理的语义树,有效压缩信息表示,减少内存开销与训练时间,同时保持语义结构的物理意义。
2025-05-11 00:04:59
122
转载 CVPR 2025 | 自动驾驶论文总结
题目:GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving。题目:GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving。
2025-05-11 00:04:59
137
转载 如何一直follow前沿的顶会动态?
多模态融合 SLAM 的门槛较高,在需要视觉 SLAM 与激光 SLAM 的基础之外,还会遇到不同模态测量的融合,不同传感器的时间同步,多传感器的外参标定,多传感器异常检测等问题,使得各位同学做这块的时候遇到诸多障碍。具身智能、大模型、扩散模型、相机标定、结构光、3DGS等三维重建、三维点云、缺陷检测、机械臂抓取、激光/视觉/多模态SLAM、自动驾驶、深度估计、模型部署、Transformer、3D目标检测、深度学习、视觉竞赛、硬件选型、视觉产品落地经验分享、学术&求职交流。
2025-05-10 00:01:38
42
转载 盘一下!ICLR 2025现场那些有趣的poster及paper(具身智能方向)
(regret),具体操作包括:(1)在任务状态空间中系统性地屏蔽感知输入(2)测量不同屏蔽时长(duration)和时机(timing)对任务成功率的影响(3)建立感知价值与任务状态、策略架构的关联模型。(MoSAT)实现关节间的消息传递,并引入拓扑位置编码(TopoPE)来高效表示动态演化的形态结构,从而支持轻量级模型(仅1.4M参数)下的复杂任务处理。首先,它通过文本提示(如“高踢腿”或“坐下”)直接控制动作风格,结合目标位置实现精确的任务描述,突破了传统控制器对预定义动作的依赖。
2025-05-10 00:01:38
60
转载 SLAM中的数学:轻松理解李群与李代数(中)
它的李括号定义稍微复杂一些,但本质上反映了两个元素的“差异”或者说“不可交换性”。比如,两次旋转操作的顺序通常是不能交换的,李括号就刻画了这种性质。其实它就是我们上一讲提到的旋转向量 (Rotation Vector),它的方向是旋转轴,它的模长是旋转的角度。粗略地说,李代数描述了李群在单位元附近的“正切空间”(Tangent Space),也就是它局部的“导数”信息。李代数不仅仅是一个向量空间,它还定义了一种特殊的二元运算,叫做李括号 (Lie Bracket),它的李括号可以由向量的叉乘定义。
2025-05-10 00:01:38
50
转载 CVPR‘25开源 | ETH重磅One2Any:任意物体的 6D 位姿估计
在多个基准数据集上的实验表明,我们的模型可以很好地推广到新的对象,实现了最先进的准确性和鲁棒性,甚至可以与需要多视图或CAD输入的方法相媲美,而计算量却很小。受标准化物体坐标空间(Normalized Object Coordinate Space, NOCS)的启发(该空间使用规范物体姿态定义类别级物体的2D-3D对应关系),我们通过定义参考物体坐标系(Reference Object Coordinate, ROC)放宽了规范坐标系要求,该坐标系在参考相机坐标系中呈现归一化的物体坐标。
2025-05-10 00:01:38
69
转载 CVPR‘25开源 | ETH重磅One2Any:任意物体的 6D 位姿估计
在多个基准数据集上的实验表明,我们的模型可以很好地推广到新的对象,实现了最先进的准确性和鲁棒性,甚至可以与需要多视图或CAD输入的方法相媲美,而计算量却很小。受标准化物体坐标空间(Normalized Object Coordinate Space, NOCS)的启发(该空间使用规范物体姿态定义类别级物体的2D-3D对应关系),我们通过定义参考物体坐标系(Reference Object Coordinate, ROC)放宽了规范坐标系要求,该坐标系在参考相机坐标系中呈现归一化的物体坐标。
2025-05-10 00:01:38
80
转载 CVPR‘25开源 | ETH重磅One2Any:任意物体的 6D 位姿估计
在多个基准数据集上的实验表明,我们的模型可以很好地推广到新的对象,实现了最先进的准确性和鲁棒性,甚至可以与需要多视图或CAD输入的方法相媲美,而计算量却很小。受标准化物体坐标空间(Normalized Object Coordinate Space, NOCS)的启发(该空间使用规范物体姿态定义类别级物体的2D-3D对应关系),我们通过定义参考物体坐标系(Reference Object Coordinate, ROC)放宽了规范坐标系要求,该坐标系在参考相机坐标系中呈现归一化的物体坐标。
2025-05-10 00:01:38
77
转载 CVPR‘25开源 | ETH重磅One2Any:任意物体的 6D 位姿估计
在多个基准数据集上的实验表明,我们的模型可以很好地推广到新的对象,实现了最先进的准确性和鲁棒性,甚至可以与需要多视图或CAD输入的方法相媲美,而计算量却很小。受标准化物体坐标空间(Normalized Object Coordinate Space, NOCS)的启发(该空间使用规范物体姿态定义类别级物体的2D-3D对应关系),我们通过定义参考物体坐标系(Reference Object Coordinate, ROC)放宽了规范坐标系要求,该坐标系在参考相机坐标系中呈现归一化的物体坐标。
2025-05-10 00:01:38
26
转载 CVPR‘25开源 | ETH重磅One2Any:任意物体的 6D 位姿估计
在多个基准数据集上的实验表明,我们的模型可以很好地推广到新的对象,实现了最先进的准确性和鲁棒性,甚至可以与需要多视图或CAD输入的方法相媲美,而计算量却很小。受标准化物体坐标空间(Normalized Object Coordinate Space, NOCS)的启发(该空间使用规范物体姿态定义类别级物体的2D-3D对应关系),我们通过定义参考物体坐标系(Reference Object Coordinate, ROC)放宽了规范坐标系要求,该坐标系在参考相机坐标系中呈现归一化的物体坐标。
2025-05-10 00:01:38
25
转载 CVPR‘25开源 | ETH重磅One2Any:任意物体的 6D 位姿估计
在多个基准数据集上的实验表明,我们的模型可以很好地推广到新的对象,实现了最先进的准确性和鲁棒性,甚至可以与需要多视图或CAD输入的方法相媲美,而计算量却很小。受标准化物体坐标空间(Normalized Object Coordinate Space, NOCS)的启发(该空间使用规范物体姿态定义类别级物体的2D-3D对应关系),我们通过定义参考物体坐标系(Reference Object Coordinate, ROC)放宽了规范坐标系要求,该坐标系在参考相机坐标系中呈现归一化的物体坐标。
2025-05-10 00:01:38
32
如何在Linux下使用“linuxdeployqt”源码打包发布Qt程序
2022-07-18
ubuntu下基于Clion+QT编写的界面demo,适合入门
2022-07-11
OpenCV3.3.1安装包
2022-07-01
linux下TCP通讯助手
2022-06-30
本demo主要实现ubuntu下实现与PLC以及机械臂之间的TCP网络通讯,并将C++代码编译成可以供C函数直接调用的C库。
2022-06-22
Windows下TCP通讯实战demo及TCP助手
2022-06-03
Linux下的TCP通讯实战demo以及通讯助手下载
2022-06-03
particle_filter_demo.zip
2020-12-03
UKF(无迹卡尔曼滤波)
2020-12-03
Visual Assistant 2015破解版安装包
2018-09-12
PCL1.8.0+VS2013+Win10 x64的配置教程
2018-05-08
粒子滤波在图像领域的跟踪
2018-04-25
socket通信界面程序
2018-01-24
socket通信技术
2018-01-23
GBK.h QT中显示中文
2018-01-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人