ubuntu下好用的pythonIDE:vscode

本文介绍了如何在集成开发环境中正确配置Python版本的方法。通过设置PythonPath并选择合适的Python版本,确保开发环境能够正常运行Python项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

安装过程网上教程很多,这里需要注意下,配置python版本

File->Preference->Settings->Python Path

之后可以在IDE的左下角选择一个已经安装的Python版本。

### Ubuntu 24.04上安装Anaconda并配置Python开发环境 #### 安装Anaconda 为了在Ubuntu 24.04上成功安装Anaconda,需先下载适用于Linux系统的Anaconda安装脚本。通过终端执行命令来启动安装过程: ```bash sudo bash Anaconda3-2024.02-1-Linux-x86_64.sh ``` 此操作会引导用户完成一系列安装选项的选择,包括但不限于安装路径等设置[^2]。 一旦安装完毕,为了让系统能够识别`conda`指令,需要更新当前用户的shell配置文件(通常是`.bashrc`)。这一步骤可通过运行如下命令实现: ```bash source ~/.bashrc ``` 上述命令使得新开启的任何终端窗口都能自动加载Conda的相关环境变量,从而允许直接调用`conda`命令管理虚拟环境和其他依赖项[^3]。 #### 配置VSCode中的Python环境 对于希望利用Visual Studio Code (VSCode)作为主要IDE进行Python编程工作的开发者而言,在完成了基本的Anaconda部署之后还需要进一步调整编辑器内部设定以便更好地支持特定版本解释器以及库包管理工具。 ##### 设置默认Python解释器 进入VSCode后,可以通过左侧活动栏中点击图标或者顶部菜单选择“View -> Command Palette...”,输入“Python: Select Interpreter”。从列表里挑选由刚才所安裝之Anaconda所提供的Python解析器版本,这样可以确保后续创建项目时,默认情况下即采用这套经过精心准备好的软件集合来进行工作[^1]。 ##### 使用Conda环境于VSCode内 当涉及到不同项目的特殊需求时,可能要建立多个隔离化的开发空间——也就是常说的virtual environments。借助于Anaconda的强大功能,可以在任意时刻轻松构建新的envs,并指定其对应的Python版次及其他必要的第三方模块。具体做法是在激活目标env后再返回到VSCode重复之前提到过的选取解释器流程即可切换至相应的工作区。 另外值得注意的是,如果想让VSCode更方便地访问这些自定义env,则建议将它们加入到全局环境中去;方法是修改个人账户下的`.condarc`文件添加如下内容: ```yaml envs_dirs: - ~/anaconda3/envs ``` 这样做不仅简化了手动查找的过程,同时也提高了工作效率。 #### 测试安装成果 最后但同样重要的一环就是验证整个搭建是否顺利完成。一种简单有效的方式就是在新开设的一个空白Python文档里面尝试导入一些常见的科学计算类库比如NumPy、Pandas之类看能否正常运作无误报错现象发生。 ```python import numpy as np print(np.__version__) ``` 以上代码片段用来确认NumPy已被正确装载入内存之中并且能打印出它的版本号信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值