汇总!三维点云去噪算法,涉及深度学习等

本文介绍了点云去噪的基本概念,包括噪声来源和去噪的重要性。详细阐述了统计滤波、直通滤波、半径滤波等多种经典去噪算法,并探讨了深度学习在点云去噪中的应用,包括自编码器、CNN、GAN和DnCNN等方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5bf8cd6ea351d8bd088d0d61b4c65ccc.jpeg

作者:PCIPG-晨艺 | 来源:3DCV, 投稿入口

添加微信:cv3d007,备注:三维点云,拉你入群。文末附行业细分群。

1 什么是去噪

1.1 噪声

噪声:也称为孤立点/离群点/异常点,是指点云数据中的不相关或不希望存在的干扰信号或误差。噪声来源:环境光线的明亮程度、测量设备精度及系统误差、物体材料及表面的纹理和人为抖动等因素影响。

1.2 噪声来源

环境光线的明亮程度、测量设备精度及系统误差、物体材料及表面的纹理和人为抖动等因素。

1.3 点云去噪

在点云数据中,通过适当的滤波和处理方法,去除无用或噪声点,以提高数据质量和准确性的过程。

2 常见的去噪算法

2.1 统计滤

### CloudCompare 中 SOR 滤波器参数设置 在CloudCompare中应用统计离群点除(SOR, Statistical Outlier Removal)滤波器进行点云主要涉及几个重要参数的选择。这些参数对于获得理想的过滤效果至关重要。 #### 参数说明 - **K邻域数 (k)** 为了定义一个点是否为离群点,算法会计算该点周围邻居的数量。通常建议将此值设为较小范围内的整数值,例如10到20之间[^1]。如果`k`值过低,则可能导致正常数据被误删;反之过高则可能无法有效移除声。 - **标准差倍数 (std_mul)** 这个阈值决定了多远距离外的点被认为是异常点并予以删除。一般推荐的标准差乘数介于1至2之间[^1]。较低的标准差倍数意味着更严格的筛选条件,可能会丢失一些有效的边缘特征;而较高的值虽然能保留更多细节但也容易放过部分音。 ```cpp // C++ pseudo code to set up the filter in a programmatic way using CC's API or similar libraries. cc::GenericFilter* sor_filter = new cc::SORFilter(); sor_filter->setParameter("k", 15); // Set k-nearest neighbors count sor_filter->setParameter("std_mul", 1.5);// Set standard deviation multiplier ``` - **迭代次数 (iterations)** 有时一次处理并不能完全清除所有的孤立点,在这种情况下可以考虑增加迭代次数来反复执行上述过程直到达到满意的结果为止。不过需要注意的是过多轮次也可能损害原始几何结构的信息完整性[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值