师姐,学习视觉Transformer有哪些技巧呢?

视觉感知算法的核心在于精准实时地感知周围环境,以便下游更好地进行决策规划,而目标检测任务就是视觉感知的基础。不仅在自动驾驶领域,在机器人导航、工业检测、视频监控等领域,目标检测都有着广泛应用,也是近年来理论研究的热点。作为计算机视觉中的基础算法,目标检测对后续的人脸识别、目标跟踪、实例分割等任务都起着至关重要的作用。

基于深度学习的卷积学习网络(CNN)在目标检测任务上取得了优越的性能,例如FasterRCNN、YOLO系列、CenterNet等等,也在实际应用中实现了成功部署和使用。自Transformer在2017年被提出之后,无论是自然语言处理领域,还是计算机视觉 (CV)、强化学习 (RL)、生成对抗网络 (GAN)、语音处理甚至是生物学领域,Transformer都大放异彩。而在目标检测领域中,视觉Transformer不仅可以实现2D检测、3D检测,还可以实现多模态检测,BEV视角下的检测,性能也非常出色。 因此,掌握Transformer相关知识和工程基础成为了企业招聘算法工程师的一个技能要求点,也是简历上的一个加分项。

e809167100947730550ca3ba4d8f35d9.jpeg

▲长按添加小助理微信:cv3d007,领取「 Transformer论文及试看视频」

然而,想要掌握基于Transformer的目标检测算法,有以下3个难点

  • 理解Transformer背后的理论基础,比如自注意力机制(self-attention), 位置编码(positional embedding),目标查询(object query)等等,网上的资料比较杂乱,不够系统,难以通过自学做到深入理解并融会贯通。

  • 掌握基于Transformer的目标检测算法的思路和创新点,一些Transformer论文涉及的新概念比较多,话术没有那么通俗易懂,读完论文仍然不理解算法的细节部分。

  • Transformer代码不易看懂,因为作用机制与CNN有不少差别,所以完全理解代码并实践应用需要花费很大功夫。

那么如何学习基于Tansformer的目标检测算法呢?

课程「目标检测中的视觉Transformer」正是帮助各位同学解决以上这些难点,不仅为大家详细讲解视觉Transformer的基础知识,还有各种经典的基于Transformer的目标检测算法,还配有代码解读和实践课程,让大家真正活学活用,理解和掌握这些知识理论。

f5a28724f89bb3f3b02e37cc53f1e93b.png15ad96d8a772d1a8238c20785562c8d2.png3ca8a6af96a2f83ab0f659131ac3af6b.png

实践部分

a4f5d1c036b2f9ffa28e1433d5753331.png 015d18f9a1e9d87cd0f629a48745f142.png 8486a44e35bb7b76b6865087d8d4c5ed.jpeg 3add75c82c18f83c778f139177ad5f77.jpeg 5341f570dd83cb61f67853e7d2e6bd0d.jpeg

9f718c6fa95c7bbdd5be33f5930286d4.png

71e8bd9b8b414a6b3747c57e8a43cd2f.jpeg f758d09585092ccd827adde1bd740755.jpeg 5a3ac07d63dcf2ffca5214d29059fd24.jpeg d9fd3fed876d0f2a56052b82292413ae.jpeg

开课时间

2023年7月28日晚八点(周五),每周更新一章节。

课程答疑

本课程答疑主要在本课程对应的鹅圈子中答疑,学员学习过程中,有任何问题,可以随时在鹅圈子中提问。

c2f332a5bd8b4df2ac15c9ae86a627a6.png
▲长按购买课程
327a3fe1133450020f1a82bda6b16535.jpeg
▲长按添加小助理微信:cv3d007,领取「 Transformer论文及试看视频」
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值