简明扼要:Action chunking with Transformers

原链接(我是原作者):https://yonggie.github.io/posts/2023/12/blog-post-1/

Motivation

To allievate temporal accumulated errors, so introduce kkk future actions for current prediction.

Explanation

Conditioned Variational Auto Encoder(CVAE), Transformer as encoder and decoder.

Settings

action={imgs,joints}\{imgs, joints\}{imgs,joints}

Training

在这里插入图片描述
在这里插入图片描述

Inference

Mannually set K and K running-average possiblity to esamble current action embedding (to tackle accumulated errors).

在这里插入图片描述
在这里插入图片描述

Questions

We see the condition is not the same, even though paper claimed that it uses “Conditioned VAE”. It’s a mathematically wrong approach in the first place. We are not even talking about the [CLS] and [POS_EMD] auxiliary input.
在这里插入图片描述

Thoughts & Comments

  1. Transformer as CVEA encoder and decoder
  2. K temporal ensamble
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值