从零开始解构Vicuna模型(一)

引言:本系列的目的是从零开始记录复现vicuna模型的过程,包括了fastchat库的复现和vicuna具体的代码细节,包括微调和推理,所有实验均基于linux系统4090服务器。

第一章:环境安装与“hello world”

官方项目地址

https://github.com/lm-sys/FastChathttps://github.com/lm-sys/FastChat

配置环境:

conda create -n fastchat python=3.10.14
conda activate fastchat 

git clone https://github.com/lm-sys/FastChat.git
cd FastChat
pip3 install -e ".[model_worker,webui]"

环境配置好之后,使用huggingface 国内镜像源下载vicuna模型,这里选择下载vicuna 7B v1.5

模型权重官网:

https://huggingface.co/lmsys/vicuna-7b-v1.5https://huggingface.co/lmsys/vicuna-7b-v1.5用以下代码即可直接下载模型到本地指定路径位置:

import os
from huggingface_hub import snapshot_download

os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"

snapshot_download(
    repo_id="lmsys/vicuna-7b-v1.5",
    local_dir="/data/{your_name}/project/FastChat/ckpts/vicuna-7b-v1.5"
)

下载完成配置好模型路径之后就可以输入以下代码运行啦!

python3 -m fastchat.serve.cli --model-path lmsys/vicuna-7b-v1.5

最后是终端代码对话的效果和显存占用:

(第一次加载的时候会比较慢)

vicuna7B模型在服务器上的显存占用在14G左右,用4090显卡生成速度很快,基本没有延迟

后续对代码的分析将持续更新,敬请关注!

### Vicuna 模型权重文件下载 为了获取 Vicuna 模型的权重文件,需通过 Hugging Face 平台完成下载操作。对于需要认证才能访问的模型版本,如 LLaMA 或其衍生模型,在下载过程中加入 Hugging Face 的 Access Token 是必要的[^2]。 具体来说,如果采用命令行工具 `wget` 进行下载,则可以在请求头中附加授权信息来提供此令牌: ```bash wget --header="Authorization: Bearer <your_hf_token>" <model_download_url> ``` 而当利用 Git 克隆仓库的方式时,于提示输入密码处填入该 Access Token 即可继续下载流程。 旦成功下载所需模型及其配置文件之后,应将其放置到项目的特定目录下以便后续调用。例如,按照说明文档指示,应当把下载得到的Hugging Face模型权重以及Token相关文件存放在项目里的 `models` 文件夹之中[^1]。 考虑到不同规模的 Vicuna 模型对硬件资源的需求差异较大,确保本地环境满足最低要求也非常重要。比如运行仅基于 CPU 而不依赖 GPU 的情况下,Vicuna-7B 至少需要约 30 GB 的 RAM;而对于更大的 Vicuna-13B 版本而言,则可能消耗高达 60 GB 左右的内存空间[^3]。 #### 示例 Python 启动代码片段 (针对 CPU) ```python import fastchat if __name__ == "__main__": model_path = "/path/to/your/local/models/vicuna-13b-delta-v1.1-llama-merged" device = "cpu" # 使用 FastChat 库启动 CLI 接口服务并指定加载路径与设备参数 fastchat.serve.cli.main(model_path=model_path, device=device) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值