自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 idea有了!多尺度时间序列新SOTA!

【多尺度时间序列分析研究进展】针对复杂时序场景(如金融分析),最新研究聚焦多尺度建模方法,突破传统固定窗口限制。Pathformer等创新模型通过动态调整时间分辨率,同时捕捉局部细节与长期趋势,显著提升预测性能。精选4篇前沿成果:1)多尺度分解MLP-Mixer架构,通过残差损失优化分解效果;2)MSGNet结合傅里叶分析与自适应图卷积;3)LDM框架用稀疏化处理长序列;4)基于扩散模型的生成式预测方法。这些方案在ETTh1等数据集上实现MSE降低9.8%-90%的突破,代码已开源。研究证明多尺度建模能有效

2025-06-20 17:37:13 408

原创 深度学习水论文:mamba+图像增强

Mamba架构在图像增强领域取得突破性进展。目前已有VmambaIR、TAMambaIR等多篇论文展示了Mamba在图像恢复与增强中的优势,包括MambaUIE通过2.8GFLOPs实现高效水下图像增强,O-Mamba采用双分支结构提升性能,以及PixMamba通过双层架构优化细节保留。这些研究创新性地结合Mamba的长序列建模能力与CNN的局部特征提取,显著降低了计算成本(如降低67.4%的GFLOPs),同时实现了SOTA性能指标(PSNR达27.13,SSIM达0.93)。该方向为高效图像处理提供了新

2025-06-05 09:14:07 1032

原创 持续学习新突破!登上nature!

总结了持续学习的代表性方法,如正则化方法、经验回放方法、优化方法、表示方法和架构方法,并详细分析了它们的动机、实现和性能。证明了在计算预算受限的情况下,现有持续学习方法的性能普遍不佳,而简单的经验风险最小化方法在这些条件下表现更好。通过实验验证,即使在不同的计算预算和时间步数下,这些结论仍然成立,为持续学习的实际应用提供了新的视角。发现即使在计算受限的设置下,简单的最小基线方法(如均匀采样)也能胜过现有的持续学习方法。重新审视了持续学习问题,特别是在计算预算受限的设置下,分析了传统持续学习方法的性能。

2025-05-29 09:56:18 480

原创 顶会新方向:卡尔曼滤波+目标检测

卡尔曼滤波与目标检测的创新结合在学术界取得了显著成果,多篇研究登上顶级期刊和会议。例如,无人机竞速系统Swift通过这种结合实现了冠军级别的表现,并发表在Nature上。卡尔曼滤波能有效处理带噪声的数据,与目标检测结合后,两者优势互补,提升了检测的准确性和鲁棒性。相关研究包括自动标注激光雷达数据、改进多目标跟踪算法、以及多变量不确定性校准等,这些方法在多个数据集上均表现出色,推动了目标检测技术的发展。

2025-05-27 09:22:52 1574 1

原创 发论文神器!即插即用多尺度融合模块

即插即用多尺度融合模块在计算机视觉任务中展现出显著优势,能够有效处理图像中不同尺寸和形态的目标。这些模块通过提取和融合多尺度特征,增强模型对复杂场景的理解能力,且无需修改现有深度学习模型,便于快速应用。本文介绍了四种最新的多尺度融合模块:Scale-Aware Modulation与Transformer结合、基于多尺度特征融合的源相机识别算法、面向Transformer基目标检测器的多尺度特征高效利用方法,以及ViT-CoMer视觉Transformer。这些模块在多个视觉任务中均取得了显著的性能提升

2025-05-23 09:16:14 955

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除