Mamba-YOLO的训练踩坑记录

  最近使用服务器跑了Mamba-YOLO,但是在配置环境的时候花费了很长的时间才解决,所以进行记录,同时也希望有缘人可以刷到,节约他们的时间,将精力花费在模型的改进等方面,而不是将时间花费在配置环境上面。

注意,这次实验实在租用的服务器上面进行的Linux,win好像配置非常麻烦,我之前在自己win电脑试了很长时间,没有成功过。

  下面直接描述步骤

1. 先到官网下载两个项目:

https://github.com/HZAI-ZJNU/Mamba-YOLO

hustvl/Vim: [ICML 2024] Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model

vim和mamba-yolo都要下载,因为我是先按照网上配置了vim的环境,然后配置的mamba-yolo的环境。

2. 参考下面的链接,

https://blog.csdn.net/yyywxk/article/details/145005885 按照这个博客先进行vim的环境配置。如果嫌麻烦,也按照我下面的来。

环境安装:(建议就是直接复制粘贴,不要自己修改版本)

conda create -n vim python=3.10.13
conda activate vim
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1+cu118 torchvision==0.16.1+cu118 torchaudio==2.1.1+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.htmlconda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging

进入到vim项目中,然后执行下面的指令:

pip install causal-conv1d==1.1.1
 

在进入vim下面的一个文件夹内:

依次执行下面的指令:

cd Vim/mamba-1p1p1

# 下面我的会弹出警告,不用管
conda install nvidia/label/cuda-11.8.0::cuda-cudart-dev  # 根据CUDA版本
conda install nvidia/label/cuda-11.8.0::libcusparse-dev
conda install nvidia/label/cuda-11.8.0::libcublas-dev

MAMBA_FORCE_BUILD=TRUE pip install .
cd ../

到这一步,vim里面的工作就完成了,下面要切换到mamba-yolo的项目中。

3.mamba-yolo工程

经过上面的过程,下面可以参考官网的过程,不用到处找训练步骤了。

进入到mamba-yolo项目内:执行这两条指令:

cd selective_scan && pip install . && cd ..
pip install -v -e .

执行完成之后还会有报错:

和这句话相关的会报错,直接注释。

还会报错:RuntimeError: Numpy is not available 这个将numpy的版本降级而不是更新,下面这个版本就可以。

pip install numpy==1.26.4 -i https://pypi.tuna.tsinghua.edu.cn/simple

到这一步之后,环境的配置应该是可以顺利解决了。然后就和yolo一样,数据集yaml文件的路径修改,模型配置yaml中类别的修改,然后就是训练文件的修改,原始文件中,一些数值很大不利于我们的训练。留意这些参数的配置(原始文件中我记得设置的是100多),还有路径问题,正常修改之后应该就可以顺利跑通了。祝顺利!

跑通截图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值