最近使用服务器跑了Mamba-YOLO,但是在配置环境的时候花费了很长的时间才解决,所以进行记录,同时也希望有缘人可以刷到,节约他们的时间,将精力花费在模型的改进等方面,而不是将时间花费在配置环境上面。
注意,这次实验实在租用的服务器上面进行的Linux,win好像配置非常麻烦,我之前在自己win电脑试了很长时间,没有成功过。
下面直接描述步骤
1. 先到官网下载两个项目:
https://github.com/HZAI-ZJNU/Mamba-YOLO
vim和mamba-yolo都要下载,因为我是先按照网上配置了vim的环境,然后配置的mamba-yolo的环境。
2. 参考下面的链接,
https://blog.csdn.net/yyywxk/article/details/145005885 按照这个博客先进行vim的环境配置。如果嫌麻烦,也按照我下面的来。
环境安装:(建议就是直接复制粘贴,不要自己修改版本)
conda create -n vim python=3.10.13
conda activate vim
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1+cu118 torchvision==0.16.1+cu118 torchaudio==2.1.1+cu118 -f https://mirror.sjtu.edu.cn/pytorch-wheels/torch_stable.htmlconda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
conda install packaging
进入到vim项目中,然后执行下面的指令:
pip install causal-conv1d==1.1.1
在进入vim下面的一个文件夹内:
依次执行下面的指令:
cd Vim/mamba-1p1p1
# 下面我的会弹出警告,不用管
conda install nvidia/label/cuda-11.8.0::cuda-cudart-dev # 根据CUDA版本
conda install nvidia/label/cuda-11.8.0::libcusparse-dev
conda install nvidia/label/cuda-11.8.0::libcublas-dev
MAMBA_FORCE_BUILD=TRUE pip install .
cd ../
到这一步,vim里面的工作就完成了,下面要切换到mamba-yolo的项目中。
3.mamba-yolo工程
经过上面的过程,下面可以参考官网的过程,不用到处找训练步骤了。
进入到mamba-yolo项目内:执行这两条指令:
cd selective_scan && pip install . && cd ..
pip install -v -e .
执行完成之后还会有报错:
和这句话相关的会报错,直接注释。
还会报错:RuntimeError: Numpy is not available 这个将numpy的版本降级而不是更新,下面这个版本就可以。
pip install numpy==1.26.4 -i https://pypi.tuna.tsinghua.edu.cn/simple
到这一步之后,环境的配置应该是可以顺利解决了。然后就和yolo一样,数据集yaml文件的路径修改,模型配置yaml中类别的修改,然后就是训练文件的修改,原始文件中,一些数值很大不利于我们的训练。留意这些参数的配置(原始文件中我记得设置的是100多),还有路径问题,正常修改之后应该就可以顺利跑通了。祝顺利!
跑通截图: