什么是AI大模型?一文给你讲清楚为什么它能“通吃”所有任务?

一、什么是AI大模型?

请添加图片描述

AI大模型就像一个“超级程序员”,但它不是写代码,而是通过学习海量数据来完成各种任务(比如写文章、看图、翻译)。它的核心特点可以用程序员熟悉的术语来理解:

1、参数规模 = 你的代码库有多庞大?

  • 模型的参数就像代码中的变量和函数,参数越多,模型能处理的复杂任务越多。
  • 举个栗子:GPT-3有1750亿个参数,相当于一个超级大的代码库,能处理几乎所有常见的编程需求(比如写Python脚本、解析JSON、生成SQL查询)。

2、预训练 + 微调 = 用开源库快速开发项目

  • 预训练:就像你用PyTorch或TensorFlow这样的开源库,它已经帮你完成了通用功能(比如“理解语言”“识别图像”)。
  • 微调:当你需要做一个特定项目(比如开发一个翻译工具),只需要在开源库的基础上稍作修改(比如加几行代码适配新语言),而不是从头写代码。

3、多任务通用性 = 一个库搞定所有需求

  • 传统模型像“钉子”——每个任务需要一个专用工具(比如翻译工具、图片分类工具)。
  • 大模型像“瑞士军刀”——一个模型能做翻译、写代码、生成图片,甚至帮你写技术博客!

二、为什么AI大模型能“通吃”所有任务?

1. 参数多 = 能力强(就像代码库越大,功能越全)

  • 当模型参数达到数十亿级,就像你有了一套超级全的代码库,能处理复杂的逻辑。
  • 举个栗子:GPT-3不仅能写文章,还能解数学题、写代码,甚至理解隐含的逻辑(比如“如果所有猫都喜欢鱼,那么汤姆是否喜欢鱼?”)。

2. 数据驱动 = 从海量案例中学习(就像你从GitHub上学习)

  • 模型通过学习海量数据(比如互联网上的所有文章、图片、代码),积累“经验”。

举个栗子

  • 文本任务:模型通过学习千万篇技术博客,学会写技术文档。
  • 图像任务:通过学习千万张图片,模型能识别“猫”和“狗”的区别。
  • 多模态能力:模型甚至能理解“图片中的猫在追红色的球”(结合文本和图像)。

3. Transformer架构 = 一个高效的“多线程处理器”

  • 自注意力机制:就像你同时处理多个任务时,能快速找到关键信息。

  • 举个栗子:在翻译句子时,模型能自动关注“狗”和“bark”之间的关联,而不需要你手动标注。

  • 并行计算:像多线程编程一样,能高效处理长文本或复杂数据。

4. 自监督学习 = 从“半成品”中学习(就像你从文档中自学)

  • 自监督学习:模型不需要完美标注的数据,而是像你“填空”一样自己学习。

  • 举个栗子:模型会随机遮蔽一段文字中的某些词(比如“今天天气__,适合__”),然后自己预测被遮住的内容。

三、程序员视角:大模型如何“通吃”任务?

1. 开发一个翻译工具

  • 传统方法:需要专门训练一个翻译模型,耗时耗力。
  • 大模型方法:调用一个预训练好的大模型(比如通义千问),通过几行代码微调,就能让模型完成中英互译。

2. 写代码时的“智能助手”

  • 举个栗子:你用GitHub Copilot(基于大模型),输入注释“请写一个计算斐波那契数列的Python函数”,模型就能生成代码,甚至优化算法。

3. 多模态任务 = 一个API搞定所有

  • 举个栗子:上传一张图片(比如“猫在键盘上睡觉”),模型不仅能生成描述文字,还能帮你写一段关于“如何让猫远离键盘”的技术博客。

四、挑战与未来:程序员的“痛点”与解决方案

  1. 训练成本高 = 你的电脑跑不动
  • 问题:训练一个大模型需要数千块GPU,普通程序员可能只能用现成的模型。
  • 解决方案:用轻量级模型(比如Llama.cpp)或云服务(AWS SageMaker),就像调用API一样使用大模型。
  1. 实时性问题 = 网络延迟太高
  • 问题:大模型通常在云端运行,本地调用可能卡顿。
  • 解决方案:用边缘计算(比如华为的轻量化模型)或本地部署工具(如ONNX Runtime)。
  1. 黑箱问题 = 代码逻辑看不懂
  • 问题:模型生成的代码或答案有时难以解释。
  • 解决方案:用“可解释性工具”(如SHAP)或让模型生成步骤说明。

五、总结

AI大模型就像一个“超级程序员”,通过海量数据和强大架构,能快速完成多种任务。它不是替代程序员,而是你的智能助手——帮你处理重复性工作,让你专注在更有创造力的开发上。

互动问题

  • 如果你有一个大模型,最想让它帮你做什么?(比如写文档、调试代码、生成测试用例)
  • 你担心大模型会抢程序员的饭碗吗?为什么?

六、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值