ChatGPT的问世掀起全球AI大模型热潮,2023年被视作AI元年,AI大模型正以迅猛之势闯入大众生活。
从智能问答对话到辅助编程开发,从图像解析处理到自主内容创作,AI展现的能力远超多数人预期,引发“未来属于AI”的惊叹。如今,掌握AI大模型已成为互联网从业者的必备技能。
1、 大模型岗位需求
大模型时代下,企业人才需求发生变革,AIGC相关岗位人才紧缺,薪资持续攀升:
- AI运营岗位平均薪资约18457元
- AI工程师平均薪资约37336元
- 大模型算法岗位平均薪资约39607元
掌握大模型技术可拓展多重可能性:
- 成为全栈大模型工程师,覆盖Prompt工程、LangChain框架、LoRA技术开发等多领域
- 具备模型二次训练与微调能力,主导智能对话、文生图等热门应用开发
- 薪资上浮10%-20%,切入高需求、高薪资的核心赛道
- 积累优质项目经验,为未来创新创业奠定基础
限时资源领取(含8大核心板块):
- 人工智能/大模型学习路线
- AI产品经理入门指南
- 大模型方向必读书籍PDF版
- 超详细海量大模型实战项目
- LLM大模型系统学习教程
- 640套AI大模型报告合集
- 从0-1入门大模型教程视频
- AGI大模型技术公开课名额
2 、主流大模型解析
大模型指具备庞大参数规模与复杂架构的机器学习模型,通常包含数百万到数十亿参数,在自然语言处理、图像识别等领域展现出强泛化能力。按功能可分为四大类:
类型 | 核心能力 | 典型案例 |
---|---|---|
NLP大模型 | 处理自然语言文本,具备语言理解与生成能力,支持问答、创作等任务 | OpenAI的GPT系列模型 |
CV大模型 | 处理图像与视频数据,实现人脸识别、物体检测等视觉分析任务 | 腾讯PCAM大模型 |
科学计算大模型 | 解决生物信息学、材料科学等领域的大规模数值计算问题 | 华为盘古气象模型 |
多模态大模型 | 融合文本、图像、语音等多模态数据,支持跨模态搜索与生成,应用于搜索引擎、办公工具等 | 谷歌Vision Transformer模型 |
3 、2025大模型学习路线图(7大阶段)
- 系统设计基础:拆解大模型核心方法论与架构设计逻辑
- 提示词工程:掌握Prompts优化技巧,提升模型交互效率
- 平台应用开发:基于阿里云PAI平台构建电商虚拟试衣系统
- 知识库应用开发:以LangChain框架搭建物流行业智能问答系统
- 模型微调开发:针对大健康、新零售等领域进行模型定制化训练
- 多模态实战:基于SD大模型开发文生图小程序
- 行业应用落地:利用星火大模型、文心大模型等构建垂直领域解决方案
4 、定制化学习方案
适配三类人群:
- 0基础人群:从理论入门到工具实操,匹配初级岗位需求
- 技术开发人员(Java/前端/大数据等):聚焦大模型与现有技术的融合应用,转型高薪赛道
- AI领域从业者:深化大模型原理与微调技术,覆盖70%国内外主流模型
不同角色学习价值:
- AI产品经理:掌握大模型需求分析与产品设计逻辑
- AI运营:学会基于大模型优化用户交互与数据运营策略
为什么技术人员需要转型大模型?
- 行业趋势:AI大模型正在重构各行业软件生态,掌握大模型成为技术迭代刚需
- 技能升级:从传统“预训练+微调”模式升级为“Prompt工程+垂直微调”,提升开发效率与准确率
- 职业发展:本科以上学历学习大模型,可抢占热门赛道,实现薪资突破
学习成果:四大核心能力
- 全栈工程能力:覆盖前端、后端、产品、数据等多角色需求
- 项目落地能力:基于大模型解决海量数据处理与智能决策问题
- 垂直开发能力:掌握GPU算力调度、LangChain框架开发及Fine-tuning全流程
- 模型训练能力:具备热门领域(如医疗、金融)的大模型垂直训练技能
通过系统化学习,可实现从技术应用到模型创新的全链条能力跃升,在AI大模型时代抢占职业发展先机。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。