2025年,AI技术已从“概念验证”走向“规模化落地”,但许多企业仍面临一个关键问题:“AI能做什么?”
作为AI产品经理,你是否也遇到过这样的场景:
- 技术团队埋头模型优化,却无法对齐业务需求;
- 业务部门抱怨“AI功能看不懂”,无法实际使用;
- 项目上线后效果不佳,却找不到问题根源?
答案只有一个:你需要一张清晰的AI产品架构图!
本文将为你拆解AI产品经理绘制架构图的核心方法论,附赠实战案例与避坑指南,助你用一张图打通技术、业务与管理的“三重壁垒”!
一、为什么必须画AI产品架构图?
1. 从“技术堆砌”到“业务穿透”
传统问题:技术团队画出满屏算法,但业务部门看不明白;
架构图价值:用分层逻辑展示AI能力如何映射到具体业务场景(如客服机器人如何提升客户满意度)。
2. 跨团队协作的“共识起点”
管理层:一眼看清AI投入的ROI(如“大模型+供应链优化”降低库存成本30%);
技术团队:明确模块依赖(如“OCR识别”与“RPA流程”的集成方式);
业务部门:知道“AI能帮自己做什么”(如“自动审批流程节省80%人力”)。
3. 项目落地的“导航仪”
风险预警:提前暴露技术瓶颈(如“数据标注质量不足”导致模型失效);
迭代依据:用架构图作为评审标准,确保每一步都贴合业务目标。
二、绘制架构图前的三大准备动作
1. 梳理企业业务职能
核心问题:AI不是万能钥匙,必须匹配企业实际职能!
实战清单:
-
营销/客服(话术生成、客户情绪识别)
-
OA(自动会议纪要、流程审批)
-
财务(报表自动生成、发票审核)
-
人力资源(简历筛选、员工画像)
-
研发设计(代码生成、测试脚本)
-
供应链(库存预测、物流监控)
2. 归纳“共性场景”
横向连接器:跨部门通用的AI场景(如“内容生成”贯穿营销、OA、研发);
案例:某企业通过“智能文档处理”模块,同时赋能财务报销与研发文档管理。
3. 明确大模型的底层能力
能力分类:
-
语言生成(NLG):文案、代码、PPT生成;
-
知识检索+图谱:智能问答、文档查询;
-
多轮推理:复杂决策支持(如供应链调度);
-
系统集成:与ERP、CRM等系统的无缝对接。
三、架构图的“三层五维”设计法
1. 三层结构:从底层到顶层的逻辑递进
graph TD
A[基础层] --> B[技术逻辑层]
B --> C[应用层]
基础层:算力(GPU集群)、存储(HDFS)、网络(高可用架构);
技术逻辑层:模型训练、推理引擎、数据预处理(如OCR+语音转写);
应用层:用户功能模块(文本生成、图像识别、推荐系统)。
2. 五维标注法:让架构图“活起来”
维度 | 说明 |
---|---|
数据流 | 明确输入输出路径(如用户行为数据 → 模型推理 → 推荐结果) |
控制流 | 模块调用逻辑(如“权限校验”触发“模型推理”); |
技术选型 | 标注关键工具(如“PyTorch训练” + “TensorRT部署”) |
集成关系 | 与现有系统的对接点(如“API接口”与ERP系统的连接) |
反馈机制 | 设计闭环(如用户反馈 → 模型优化 → 新版本上线) |
四、实战案例
智能客服系统的架构图设计
1. 场景痛点
某电商平台客服日均处理5000+咨询,人工响应耗时长,客户满意度仅60%。
2. 架构图拆解
技术逻辑:
-
数据预处理:清洗用户历史对话,提取关键词;
-
模型训练:用监督学习优化意图识别模型;
-
推理引擎:实时响应用户请求,情绪低落时触发人工客服。
业务价值:- 响应时间从3分钟缩短至5秒;- 客户满意度提升至90%;- 人力成本降低40%。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。