企业合规人必备:RAG+LangChain+Agent 协同实战,构建高可靠 LLM 合规系统

作为企业合规产品经理,日常工作中常会接到合规团队的紧急需求。比如某天,合规同事拿着一份待审核的业务流程文档找到你,焦急地询问:“这份新上线的客户数据处理流程,是否满足 GDPR 第 5 条关于数据最小化与存储限制的要求?需要明确的合规结论和对应的条款、制度引用依据。”

要给出精准答案,不能只依赖经验判断,必须完成一系列严谨操作:先逐字拆解 GDPR 第 5 条的核心要求,再从企业内部的《数据管理规范》《客户信息存储流程》等文档中定位相关条款,接着对比业务实际操作与制度、法规的差异,若涉及第三方数据存储服务,还需核查合作方的合规证明文件。

这一系列操作,本质是复杂的“信息检索 - 多源整合 - 逻辑校验 - 结论输出”闭环。那么,如何借助 LLM(大语言模型)技术,打造能高效完成这类合规任务的系统?核心就在于理清 RAG、LangChain 与 Agent 三者的角色与协作逻辑。
在这里插入图片描述

1、 RAG:为 LLM 装上“精准合规知识库”

大模型的核心痛点之一是“知识局限性”——训练数据截止到特定时间,无法实时更新行业法规,更不了解企业内部的个性化制度、历史合规案例。而合规工作对信息的“准确性”和“时效性”要求极高,差之毫厘便可能引发合规风险。RAG(Retrieval - Augmented Generation,检索增强生成)正是解决这一痛点的关键技术。
在这里插入图片描述

🔍 核心作用:让模型“查得准、用得对”

RAG 的工作流程形成了一套标准化的“合规信息调用链路”:

  1. 需求解析:将用户的合规问题(如“数据处理流程是否符合 GDPR 第 5 条”)转化为机器可识别的检索向量;
  2. 精准检索:基于向量匹配技术,从预先构建的“企业合规知识库”中,快速筛选出相关信息,包括 GDPR 第 5 条原文、企业《数据管理规范》中对应的存储条款、过往类似业务的合规审核案例等;
  3. 信息整合:将检索到的多源信息按“法规原文 - 内部制度 - 实操案例”的逻辑排序,整合为结构化的 prompt 补充内容;
  4. 定向生成:让 LLM 仅基于整合后的合规信息生成回答,确保结论有明确依据,避免“ hallucination(幻觉输出)”。

举个具体例子,当合规团队询问“某款产品的用户协议是否符合《个人信息保护法》第 17 条”时,RAG 会自动从知识库中提取《个人信息保护法》第 17 条“个人信息处理规则明示义务”的完整条文,调取企业《用户协议制定规范》中关于条款表述的要求,以及法务团队此前审核同类协议时标注的“合规要点清单”,将这些信息打包后交给 LLM,最终生成“符合/不符合的结论 + 具体条款比对 + 需修改的条款内容”的反馈。

🧠 本质:为 LLM 提供“可溯源的外部记忆”

可以把 RAG 理解为给大模型配备了一个“合规专用 U 盘”,这个“U 盘”里存储的不是通用知识,而是经过筛选、结构化的企业合规资产,包括:

  • 外部法规库:国内外相关法律(如 GDPR、《个人信息保护法》)、行业标准(如 ISO - 27001、PCI - DSS)、监管机构最新通知;
  • 内部制度库:企业《合规管理手册》《数据安全操作流程》《员工行为规范》等;
  • 实操案例库:过往合规审核报告、违规整改记录、监管问询答复材料等。

但需要注意的是,RAG 的核心能力局限于“检索与整合”,它不会判断“检索到的信息是否足够支撑结论”,也不会主动调度其他工具(如调取业务系统的实际操作数据),更无法拆解复杂的合规任务(如“先查法规,再核制度,最后比对业务数据”)。要解决这些问题,就需要 LangChain 发挥作用。

2 、LangChain:给 LLM 搭建“合规任务流水线”

有了 RAG 提供的精准信息,下一步要解决的是“如何按合规工作的逻辑,有序完成多步骤任务”。比如,在审核客户数据处理流程时,需要先通过 RAG 调取 GDPR 条款,再提取企业内部制度,接着调用业务系统接口获取实际处理日志,最后对比分析生成报告。这些步骤的顺序、依赖关系,无法靠 LLM 自主判断,而 LangChain 正是为此设计的“LLM 应用流程编排框架”。

🔧 核心作用:让合规任务“步骤清晰、可复用”

LangChain 就像一位“合规任务调度员”,通过模块化的组件(Chain、Tool、Memory、PromptTemplate 等),将合规工作中的各类操作串联成标准化流程。以“客户数据处理流程 GDPR 合规审核”为例,借助 LangChain 可搭建如下流程链:

  1. 触发链(Trigger Chain):接收用户提交的合规审核需求,自动识别核心审核目标(如“GDPR 第 5 条合规性”)和所需材料(如“数据处理流程文档、业务系统日志”);
  2. 检索链(Retrieval Chain):调用 RAG 工具,从合规知识库中提取 GDPR 第 5 条原文、企业《数据管理规范》相关条款;
  3. 工具调用链(Tool Call Chain):通过 API 接口连接企业业务系统,自动获取待审核流程的实际操作日志(如“数据采集时间、存储周期、共享对象”);
  4. 比对链(Comparison Chain):将检索到的法规/制度要求与业务系统日志中的实际操作进行逐项比对,标记差异点(如“制度要求存储周期不超过 6 个月,实际存储 12 个月”);
  5. 报告生成链(Report Chain):根据比对结果,按“合规结论 - 条款引用 - 差异说明 - 整改建议”的格式生成标准化合规报告。
    在这里插入图片描述

🧱 本质:将“灵活的合规逻辑”转化为“可控的流程化操作”

如果说未接入 LangChain 的 LLM 是“能回答问题的专家”,那么接入 LangChain 后,它就变成了“能按流程完成复杂任务的流水线工人”。LangChain 的核心价值在于:

  • 解耦任务环节:将合规审核拆分为“检索、工具调用、比对、报告”等独立模块,每个模块可单独优化(如升级 RAG 检索算法、新增其他业务系统接口);
  • 支持流程复用:针对“合同合规审核”“员工数据合规检查”等不同场景,可基于现有模块快速调整流程链,无需重复开发;
  • 降低操作门槛:合规人员无需编写复杂代码,只需通过 LangChain 的可视化界面拖拽组件、配置流程,即可搭建专属合规工具。

但 LangChain 仍存在局限性——它只能“按预设流程执行任务”,无法应对突发情况。比如,若在比对环节发现业务日志数据不完整,LangChain 会卡在流程中,无法自主判断“是否需要向用户索要补充材料”“是否需要调用其他工具获取数据”。此时,就需要 Agent 来实现“主动决策”能力。

3、 Agent:让 LLM 成为“自主决策的合规分析师”

合规工作中,很多场景无法通过预设流程覆盖。比如,当审核一款跨境业务产品时,可能需要先判断业务涉及的国家/地区(如同时涉及欧盟、东南亚),再分别调取对应地区的隐私法规(GDPR、印尼《个人数据保护法》等),若发现某地区法规条款存在模糊地带,还需进一步检索该地区的监管判例、行业指南。这类需要“动态调整策略、自主解决问题”的场景,只有 Agent(智能体)才能胜任。

🤖 核心作用:让系统“能思考、会决策、善调整”

Agent 是 LLM 应用的“大脑”,它具备自主规划任务、调度工具、迭代优化方案的能力。以“跨境产品合规审核”为例,Agent 的工作逻辑如下:

  1. 任务拆解(Planner 模块):接收“跨境产品合规审核”需求后,先分析核心难点——“涉及多地区法规,需分区域审核”,随后将任务拆解为子任务:
    • 子任务 1:识别产品涉及的目标市场(通过调用业务部门提供的“市场分布表”确认);
    • 子任务 2:按目标市场调取对应地区隐私法规(调用 RAG 检索 GDPR、印尼《个人数据保护法》等);
    • 子任务 3:提取各法规中与“数据跨境传输”“用户 consent(同意)获取”相关的核心条款;
    • 子任务 4:比对产品现有方案与各法规条款的差异(调用产品方案文档、用户注册流程演示视频);
    • 子任务 5:针对条款模糊地带(如某地区对“儿童数据处理”的特殊要求),检索该地区监管判例(调用法律数据库工具);
  2. 任务执行(Executor 模块):按子任务顺序,依次调用 RAG、业务系统接口、法律数据库等工具,获取所需信息并完成比对;
  3. 动态调整(Memory + Feedback 模块):在执行过程中,若发现“某目标市场的最新法规未纳入 RAG 知识库”(如某国刚更新数据跨境规则),Agent 会自动暂停当前任务,触发“法规库更新流程”,待新法规录入后再继续审核;
  4. 结论输出:整合所有子任务结果,生成包含“各市场合规结论、条款引用、差异点、整改优先级、风险提示”的综合报告,并标注“需法务团队进一步确认的模糊条款”。
    在这里插入图片描述

🔄 与 RAG、LangChain 的关系:三层递进的“能力金字塔”

Agent、LangChain、RAG 并非相互替代的关系,而是构成了从“基础能力”到“高阶智能”的纵向递进结构:

  • 底层:RAG(知识基础):负责“精准获取合规信息”,是整个系统的“信息来源”,为上层能力提供数据支撑;
  • 中层:LangChain(流程骨架):负责“标准化任务执行流程”,将 RAG、工具调用等环节串联,是系统的“操作框架”;
  • 顶层:Agent(决策核心):负责“动态规划与自主决策”,根据任务目标和实际情况,灵活调度 LangChain 流程和 RAG 工具,是系统的“智能大脑”。

简单来说,RAG 解决“信息从哪来”,LangChain 解决“步骤怎么走”,Agent 解决“策略怎么定”。

4 、实战选型:不同合规场景下的技术组合策略

在实际合规工作中,无需盲目追求“全栈技术覆盖”,应根据任务复杂度选择合适的技术组合。结合企业合规场景的常见需求,可参考以下选型策略:

合规场景核心需求技术组合方案类比角色
法规条款查询、制度解读快速获取精准信息仅用 RAG + 基础 LLM合规资料员:高效调取资料,不做判断
标准化合规审核(如合同审核、数据存储审核)按固定流程完成多步骤任务,输出标准化报告RAG + LangChain + 基础 LLM合规专员:按流程办事,输出标准结果
复杂合规任务(如跨境业务合规、违规事件调查、新业务模式合规评估)动态应对不确定性,自主规划任务,跨工具协同RAG + LangChain + Agent + 多工具集成(业务系统、法律数据库等)高级合规分析师:自主分析问题,协调资源,输出定制化方案

举例说明:

  • 场景 1:新人合规培训——法规条款查询
    新入职的合规专员需要快速了解《个人信息保护法》中“数据删除权”相关条款,此时只需搭建“RAG + 基础 LLM”系统,将法规库、解读手册录入 RAG,专员输入问题后,系统可直接返回条款原文、官方解读及简单案例,满足“快速查资料”的需求。

  • 场景 2:月度数据合规检查——标准化审核
    每月需检查各业务部门的数据存储是否符合企业《数据生命周期管理规范》,此时可通过“RAG + LangChain”搭建流程:调用 RAG 提取制度条款→调用业务系统接口获取存储数据→自动比对→生成合规检查表,无需人工逐部门核查,提升效率。

  • 场景 3:新业务线合规评估——复杂任务处理
    企业计划上线一款“AI 驱动的用户行为分析产品”,需评估其在“数据采集、模型训练、结果输出”全流程的合规性(涉及《个人信息保护法》《生成式 AI 服务管理暂行办法》等多个法规,且需结合业务实际设计合规方案)。此时必须采用“RAG + LangChain + Agent”架构:Agent 先拆解任务(法规梳理→业务流程分析→风险识别→方案设计),再通过 LangChain 调度 RAG 检索法规、调用业务系统获取产品方案,最后生成包含“合规风险地图、整改方案、落地时间表”的评估报告。

5、总结:构建企业级合规 LLM 系统的核心逻辑

企业合规 LLM 系统的核心价值,在于将“人主导的复杂合规工作”转化为“系统驱动的高效、可控、可追溯的流程”。而 RAG、LangChain、Agent 三者的协同,正是实现这一价值的关键:

  • RAG 解决了合规工作的“信息准确性”问题,让系统有“可靠的资料可查”;
  • LangChain 解决了“流程标准化”问题,让系统有“清晰的步骤可依”;
  • Agent 解决了“任务智能化”问题,让系统有“灵活的策略可选”。

对于企业而言,搭建合规 LLM 系统无需一步到位,可从“RAG 基础信息查询工具”入手,逐步叠加 LangChain 实现标准化流程,最终通过 Agent 升级为“自主决策的合规助手”。在这个过程中,始终以“合规需求”为导向,而非追求技术全面性,才能让系统真正成为合规团队的“得力帮手”,而非“复杂的技术负担”。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

大模型入门到实战全套学习大礼包

1、大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

img


2、大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

在这里插入图片描述

3、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

img

4、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

img

5、大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

img

适用人群

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 关于RAGLangChain的集成 #### RAG简介 检索增强生成(Retrieval-Augmented Generation, RAG)是一种结合了信息检索和自然语言生成的技术,旨在提高模型对于特定领域或情境下的响应质量。该技术允许机器学习模型不仅依赖预训练的数据集,还能动态地从外部资源中获取最新、最相关的信息来辅助生成更加精准的回答。 #### LangChain的作用 LangChain作为一种强大的工具,在支持LLM(大语言模型)应用开发方面表现突出[^2]。它提供了丰富的API接口和服务,使得开发者可以轻松实现复杂的逻辑处理流程,并且能够有效地管理不同类型的输入输出转换过程。特别值得注意的是其对多种场景的支持能力——无论是简单的问答系统还是涉及多轮交互的任务导向型对话都可以得到很好的适配和支持。 #### 集成方法概述 为了将RAG理念融入基于LangChain的应用程序之中,通常会遵循以下几个原则: - **数据源接入**:确保有稳定可靠的数据库或其他形式的知识库作为支撑,以便在运行时提供必要的背景资料给到下游模块; - **索引机制建立**:针对所选中的文档集合创建高效的全文搜索引擎或者向量相似度匹配服务; - **查询解析优化**:设计合理的算法用于理解用户的意图并将之转化为有效的搜索条件; - **结果融合策略制定**:当获得多个候选片段之后,需考虑如何合理组合它们从而形成连贯完整的回复内容。 下面给出一段Python代码示例展示了一个简化版的RAG工作流是如何利用LangChain完成上述功能点的: ```python from langchain import LangChainClient import json def rag_with_langchain(user_query): client = LangChainClient(api_key="your_api_key_here") # Step 1: Parse user query into search terms. parsed_terms = parse_user_input(user_query) # Step 2: Retrieve relevant documents from external sources using LangChain's API. retrieved_docs = [] for term in parsed_terms: response = client.search_documents(query=term) docs = json.loads(response.text)['documents'] retrieved_docs.extend(docs[:3]) # Limit to top 3 results per term. # Step 3: Generate final answer based on retrieved information. context = " ".join([doc['content'] for doc in retrieved_docs]) generated_answer = generate_response(context=context, question=user_query) return generated_answer # Dummy implementations of helper functions used above. def parse_user_input(input_string): words = input_string.split() important_words = [word for word in words if not word.lower() in STOPWORDS] return [" ".join(important_words[i:i+2]) for i in range(len(important_words)-1)] def generate_response(context, question): prompt = f"Given this context:\n{context}\nAnswer the following question:{question}" llm_client = LangChainClient(api_key="your_api_key_here") result = llm_client.generate_text(prompt=prompt) return result.generated_text ``` 此段伪代码展示了如何通过调用LangChain所提供的API来进行基本的RAG操作。实际项目可能会涉及到更多细节上的调整以及性能方面的考量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值